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Abstract

We introduce VERTEX, an effective solution to recov-
ering the 3D shape and texture of vehicles from uncali-
brated monocular inputs under real-world street environ-
ments. To fully utilize the semantic prior of vehicles, we
propose a novel geometry and texture joint representation
based on implicit semantic template mapping. Compared to
existing representations which infer 3D texture fields, our
method explicitly constrains the texture distribution on the
2D surface of the template and avoids the limitation of fixed
topology. Moreover, we propose a joint training strategy
that leverages the texture distribution to learn a semantic-
preserving mapping from vehicle instances to the canonical
template. We also contribute a new synthetic dataset con-
taining 830 elaborately textured car models labeled with
key points and rendered using Physically Based Render-
ing (PBRT) system with measured HDRI skymaps to obtain
highly realistic images. Experiments demonstrate the supe-
rior performance of our approach on both testing dataset
and in-the-wild images. Furthermore, the presented tech-
nique enables additional applications such as 3D vehicle
texture transfer and material identification, and can be gen-
eralized to other shape categories.

1. Introduction

Monocular visual scene understanding is a fundamen-
tal technology for many automatic applications, especially
in the field of autonomous driving. Using only a single-
view driving image, available vehicle parsing studies have
covered popular topics starting from 2D vehicle detec-
tion [2, 37, 35, 14, 33], then 6D vehicle pose recov-
ery [62, 38, 28, 56, 12, 13, 3, 36], and finally vehicle shape
reconstruction [30, 54, 22, 27, 15, 39, 64]. However, much
less efforts are devoted to vehicle texture estimation, even
though both humans and autonomous cars heavily rely on
the appearance of vehicles to perceive surroundings. Simul-
taneously recovering the geometry and texture of vehicles
is also important for synthetic driving data generation [34],
vehicle tracking [40], vehicle parsing [43] and so on.

Figure 1: We propose a method to recover realistic 3D textured
models of vehicles from a single image (top left) under real street
environments. Our approach can reconstruct the shape and tex-
ture with fine details. (We manually adjust the scale and layout of
models for better visualization.)

Challenges for monocular geometry and texture recov-
ery of vehicles mainly arise from the difficulties in infer-
ring the invisible texture conditioned on only visible pix-
els while handling various vehicle shapes. Additionally,
in real-world street environments, reconstruction methods
are also expected to offset the adverse impact of compli-
cated lighting conditions (e.g., strong sunlight and shad-
ows) and diverse materials (e.g., transparent or reflective
non-Lambertian surfaces). That said, the shape and appear-
ance of vehicles are not completely arbitrary. Our key in-
sight is that those challenges can be addressed with the prior
knowledge from vehicle models, especially the part seman-
tics. Therefore, we seek to find a method that is a) aware of
the underlying semantics of vehicles, and b) flexible enough
to recover various geometric structures and texture patterns.

Recently, deep implicit functions (DIFs), which model
3D shapes using continuous functions in 3D space, have
been proven powerful in representing complex geometric
structures [48, 42]. Texture fields (TF) [46] and PIFu [52]
took a step further by representing mesh texture with im-
plicit functions and estimating point color conditioned on
the input image. To do so, both TF and PIFu diffuse the
surface color into the 3D space. However, it remains phys-
ically unclear how to define and interpret the color value
off the surface. What’s worse, geometry and texture are not
fully disentangled in either PIFu or TF, as they rely on the
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location of surface to diffuse the color into the 3D space,
making it difficult to incorporate semantic constraints.

In this paper, we explore a novel method, VERTEX, for
VEhicle Reconstruction and TEXture estimation from a sin-
gle image in real-world street environments. At its core is
a novel implicit geo-tex representation that extends DIFs
and jointly represents vehicle surface geometry and tex-
ture using implicit semantic template mapping. The key
idea is to map each vehicle instance to a canonical template
field [65, 11] in a semantic-preserving manner. In our geo-
tex representation, texture inference is constrained on the
2-manifold of the canonical template; in this way, we can
leverage the semantic prior of vehicle template, encourage
the model to learn a consistent latent space for all vehicles
and bypass the unclear physical meaning of a texture field.

However, training such a representation for vehicle re-
construction is not straight-forward, because we have no ac-
cess to the ground-truth mapping from vehicle instances to
the canonical template field. [65, 11] proposed to train the
mapping network in an unsupervised manner, and the map-
ping follows the principle of shortest distance. As a result,
the mapping in these methods is not guaranteed to preserve
accurate semantic correspondences. To resolve this draw-
back, we propose a joint training method for the geometry
reconstruction and texture estimation networks. Our train-
ing method is largely different from the training schedule of
“first geometry then texture” adopted by typical reconstruc-
tion works [52, 46, 22]. This stems from the insight that the
surface texture is closely related to its semantic labels; con-
sider the appearance difference between different parts such
as car bodies, windows, tires and lights as examples. The
texture information can serve as the additional supervision
to force the template mapping to be semantic-preserving .

Trained with our joint training method, our implicit geo-
tex representation owns the advantages of both mesh tem-
plates and implicit functions: on one hand, it is expressive
to represent various shapes, which is the main advantage of
DIFs; on the other hand, it disentangles texture representa-
tion from geometry, thus supports many downstream tasks
including material editing and texture transfer. Although it
is initially designed for vehicles, our method can generalize
to other objects such as bikes, planes and sofas.

To simulate real street environments and evaluate our
method, we also contribute a synthetic dataset contain-
ing 830 elaborately textured car models rendered using
Physically Based Rendering (PBRT) system with measured
HDRI skymaps to obtain highly realistic images. Each in-
stance is labeled with key points as semantic annotations
and can be exploited for evaluation and future research.

In summary, our contributions include:

• a novel implicit geo-tex representation with semantic
dense correspondences and latent space disentangle-
ment, enabling fine-grained texture estimation, part-
level understanding and vehicle editing;

• a joint training strategy leveraging the consistency be-
tween RGB color and part semantics for semantics-
preserving template mapping;

• a new vehicle dataset, containing diverse detailed car
CAD models, PBRT based rendered images and corre-
sponding real-world HDRI skymaps.

2. Related Work
2.1. Monocular Vehicle Reconstruction

In the field of autonomous driving, works for shape re-
covery and pose estimation [31, 54, 39, 64, 30, 17, 5, 44]
can be naively extended to texture reconstruction with pro-
jective texturing. However, direct unprojection can only ob-
tain the texture of visible parts and is incapable of recover-
ing consistent 3D texture.

Recently, many works [1, 22, 27, 16] concentrate on ve-
hicle 3D texture recovery under real environments. Due
to the lack of ground truth 3D data of real scenes, they
mainly focus on the reconstruction from collections of 2D
images utilizing unsupervised or self-supervised learning
and build on mesh representation. Though eliminating the
need for 3D annotations and generating meaningful vehi-
cle textured models, these works still suffer from coarse
reconstruction results and the limitation of fixed-topology
representation. With large-scale synthetic datasets such as
ShapeNet [7], many works [46, 55, 9] train deep neural
networks to perform vehicle reconstruction from images.
Based on volumentrically representation like 3D voxel [55]
and implicit functions [46], these works generate plausible
textured models in the synthetic dataset, but still struggle
with low-quality texture. In contrast, our approach outper-
forms state-of-the-art methods in terms of visual fidelity
and 3D consistency while representing topology-varying
objects.

In addition, some works [67, 50, 66, 47] focus on novel
view synthesis, i.e., inferring texture in 2D domain. Al-
though they can produce realistic images, they lack compact
3D representation, which is not in line with our goal.

2.2. Deep Implicit representation
Traditionally, implicit functions represent shapes by con-

structing a continuous volumetric field and embed meshes
as its iso-surface [4, 57, 53]. In recent years, implicit
functions have been implemented with neural networks
[48, 42, 8, 18, 63, 52, 25, 6, 20] and have shown promis-
ing results. For example, DeepSDF [48] proposed to learn
an implicit function where the network output represents
the signed distance of the point to its nearest surface. Other
approaches define the implicit functions as 3D occupancy
probability functions and cast shape representation as a
point classification problem [42, 8, 63, 52].

As for texture inference, both TF [46] and PIFu [52] de-
fine texture implicitly as a function of 3D positions. The



Figure 2: The overview of our approach. Given the single RGB image, vehicle digitization is achieved by geometry and texture reconstruc-
tion. We first convert the original picture into an albedo map, and then extract multi-scale latent codes in Latent Embedding. Conditioned
on these latent codes, our neural networks can infer SDF to reconstruct mesh surface and then regress RGB value for the surface.

former uses global latent codes separately extracted from
input the image and geometry whereas the latter leverages
local pixel-aligned features. Compared with the above ap-
proaches [52, 46] which predict texture distribution in the
whole 3D space, our method explicitly constrains the tex-
ture distribution on the 2D manifold of the template surface
with implicit semantic template mapping.

2.3. Warping based Geometry Template Learning

As one of the most recent research hotpots, warping
based geometry can be divided into mesh-based meth-
ods [58, 61, 19, 24] and implicit methods [24, 19], accord-
ing to different representations. [58, 61] generate various
objects by deforming Ellipsoid meshes using graph CNN,
while [24, 19] use neural ODEs for learned shape defor-
mations instead. Recent works of [65, 11] argued for im-
plicitly learning templates for a collection of shapes and es-
tablishing dense correspondences. However, without tak-
ing texture information into account, the learned geometry
templates and the mapping ignore semantic alignment as
shown in Fig. 8. In contrast, our representation presents
the semantic template and firstly exploits implicit template
prior for monocular 3D reconstruction, achieving good per-
formance.

3. Implicit Geo-Tex Representation
Our method for vehicle reconstruction and texture esti-

mation is built upon a novel geo-tex joint representation,
which is presented in this section.

3.1. Basic Formulation

State-of-the-art deep implicit representations for 3D ob-
jects, such as PIFu and TF, represent texture and geometry
using separate implicit fields. However, geometry and tex-
ture are never fully disentangled in either PIFu or TF, as
they rely on the location of surface to diffuse the color into

3D space. It leads to the fact that each texture field can only
corresponds to one specific surface. This could be problem-
atic when surface geometry is not available and has to be
inferred. If the inferred geometry is slightly different from
the ground-truth, the surface texture extracted from the tex-
ture field could be erroneous.

We believe that an ideal geo-tex representation should
disentangle texture representation from geometry as uv
mapping does and should be accord with the physical fact
that texture only attaches to the 2D surface of the object. In
particular, observing that vehicles are a class of objects with
a strong template prior, we extend DIT [65] and propose
a joint geo-tex representation using deep implicit semantic
templates. The key idea is to manipulate the implicit field
of the vehicle template to represent vehicle geometry while
embedding texture on the 2-manifold of the template sur-
face. Mathematically, we denote the vehicle template sur-
face with ST as the level set of a signed distance function
F : R3 7→ R, i.e. F (q) = 0, where q ∈ R3 denotes a 3D
point. Then our representation can be formulated as:

ptp = W (p, zshape)
s = F (ptp)

p
(S)
tp = W (p(S), zshape)

c = T (p
(S)
tp , ztex)

(1)

where W : R3×Xshape 7→ R3 is a spatial warping function
mapping the 3D point p ∈ R3 to the corresponding loca-
tion ptp in the canonical template space conditioned on the
shape latent code zshape, and F queries the signed distance
value s at ptp. p(S) ∈ S ⊂ R3 is a 3D point on the vehicle
surface S, which is also mapped onto the template surface
ST using the warping function W , and T : ST×Xtex 7→ R3

regresses the color value c of the template surface point p(S)
tp

conditioned on the texture latent code ztex. Intuitively, we
map the vehicle surface to the template using warping func-
tion W and embed the surface texture of different vehicles



onto one unified template. Therefore, in our representa-
tion, texture is only defined on the template surface (a 2D
manifold), avoiding unclear physical meaning of a three-
dimensional texture field.

3.2. Formulation for Image-based Reconstruction
For a specific instance, the shape information is defined

by zshape, while the texture information is encoded as ztex,
both of which can be extracted from the input image us-
ing CNN-based encoders. To further preserve fine details
presented in the monocular observation, we fuse local tex-
ture information represented as zloc tex(p) at the pixel level.
Not only the texture in visible region can benefit from lo-
cal features, invisible regions can also be enhanced with the
structure prior of the template. Formally, our formulation
can be rewritten as:

ptp =W(p, zshape)
s = F (ptp)

p
(S)
tp = W (p(S), zshape)

c = T (p
(S)
tp , ztex, zloc tex(p))

(2)

where T : ST × Xtex × Xloc tex 7→ R3 is conditioned on
the latent codes ztexandzloc tex .

Compared with the previous works, the main advantage
of our joint representation is that it explicitly constrains the
texture distribution on the 2D surface of the template model,
which effectively reduces the complexity of regressing tex-
ture. Besides, with the template being an intermediary,
shape latent codes and texture latent codes are well decou-
pled. As a result, it is easy to combine different pairs of la-
tent codes to transfer texture across shapes, as demonstrated
in Fig. 6. Moreover, template can be custom-designed to
assign extra semantics, such as material information. Ob-
serving that vehicles always share similar material in cor-
responding parts (e.g. glass in car window, metal in car
body), our representation can become a promising solution
to monocular vehicle material recovery.

In summary, aiming at vehicle texture recovery, our rep-
resentation is more expressive with less complexity. How-
ever, implementing and training our representation for tex-
tured vehicle reconstruction is not straight-forward. We will
introduce how we achieve this goal in Section 4.

4. Joint Geo-tex Training Method
In this section, we first describe our network architecture

in Sec. 4.1. In Sec. 4.2, we present how we train our geom-
etry reconstruction network and texture estimation network
jointly. The inference scheme is presented in Sec. 4.3.

4.1. Network Architecture
Fig. 2 illustrates the overview of our network, consisting

of three modules, i.e., Latent Embedding (yellow), Geom-
etry Reconstruction (blue) and Texture Estimation (green).

Our network takes as input a single vehicle image and cor-
responding 2D silhouette, which can be produced by off-
the-shelf 2D detectors [26], and generates a textured mesh.

Albedo Recovery: We empirically found that directly
extracting texture latent codes from the input images leads
to unsatisfactory results. Therefore, before feeding the in-
put image to our network, we first infer the intrinsic color
in 2D domain by means of image-to-image translation [51],
and the recovered albedo image will be used as the input for
texture encoders in Latent Embedding. We find this mod-
ule effectively contributes to alleviating the noise effects of
image illumination on consistent texture recovery.

Latent Embedding: The global shape and texture la-
tent codes, zshape & ztex, are extracted from the input im-
age and recovered albedo map using two separate ResNet-
based [21] encoders respectively. The local texture feature,
zloc tex(p), is sampled following the practice of PIFu [52].
Different with other texture inference works [52, 46] which
only utilize either global or local features for texture recon-
struction, we fuse multi-scale texture features to recover ro-
bust and detailed texture.

Geometry Reconstruction & Texture Estimation:
These two modules form the core of VERTEX. They con-
sist of three main components: Template Mapping, Tem-
plate SDF Decoder and RGB Decoder. Conditioned on
zshape, volume samples are sequentially fed to the Tem-
plate Mapping and Template SDF Decoder to predict the
continuous signed distance field. For texture estimation,
surface points on reconstructed mesh are firstly warped to
the template surface conditioned on zshape, and then passed
through the RGB Decoder with embedding latent codes
ztex, zloc tex(p) and zpose to predict texture.

4.2. Network Training
Based on our implicit geo-tex representation, we train

the geometry and texture reconstruction network jointly. In
this way, we are able to leverage the consistency between
RGB color and semantic part segmentation to force the tem-
plate mapping to be semantic-preserving. We visualize the
training process in Fig. 3 and provide detailed definition of
our training losses.

Data Loss: For geometry reconstruction, we mainly
train by minimizing the `1-loss between the predicted and
the ground-truth point SDF values:

Lgeo =
1

Nsdf

Nsdf∑
i=1

‖T (W (pi, zshape))− si‖1 (3)

where Nsdf represents the number of input sample points,
zshape is the shape latent code corresponding to the volume
sample point pi, and si is the corresponding ground truth
SDF value on the pi.

To train the texture estimation network, we minimize the
`1-loss between the regressed and the ground-truth intrinsic



Figure 3: To implement implicit semantic template mapping (right), we minimize both data terms of geometry (blue arrows) and texture
(green arrows) reconstruction simultaneously. Besides, the regularization terms (orange and pink arrows) for specific network modules are
applied to assist training. Each neural network module plays the role of domain mapping conditioned on corresponding latent codes as
mentioned in overview. Note that Z in RGB Decoder is the concatenation of the global and local texture latent codes.

RGB value:

Ltex =
1

Nsf

Nsf∑
i=1

∥∥∥T (W (
p
(S)
i , zshape

)
, ztex,

zloc tex(p
(S)
i )

)
− ci

∥∥∥
1

(4)

where Nsf represents the number of input surface points, ci
is the corresponding ground truth color value on the surface
point pi, and zshape, ztex and zloc tex are the latent codes
corresponding to the p

(S)
i .

Regularization Loss: To establish continuous map-
ping between the instance space and the canonical tem-
plate space, we introduce an additional regularization term
to constrain position offsets of points after warping:

Lreg =
1

Nsdf

Nsdf∑
i=1

‖W (pi, zshape)− pi‖2 (5)

Template SDF Supervision: We supervise Template
SDF Decoder directly using the sample points of the tem-
plate car model. The loss is defined as:

Ltp sdf =
1

Ntp sdf

Ntp sdf∑
i=1

∥∥∥T (p(tp)
i )− s

(tp)
i

∥∥∥
1

(6)

where Ntp sdf represents the number of input sample points,
p
(tp)
i represents the volume sample point around template

model and s
(tp)
i is the corresponding SDF value.

Overall, the total loss function is formulated as the
weighted sum of above mentioned terms:

L = Ltex + wgLgeo + wregLreg + wtLtp sdf (7)

With embedding latent codes implicitly depending on the
parameters of encoders, the whole network is trained end-
to-end by minimizing Eq. 7. See supplementary for imple-
mentation details.

4.3. Inference

As shown in the pipeline in Fig. 2, during inference, we
first regress the signed distance field with the branch of ge-
ometry reconstruction, and then 3D points on the extracted
surface are input to the branch of Texture Estimation to
recover surface texture. However, because of the lack of
ground truth camera intrinsic and extrinsic parameters, it is
difficult for a 3D point to sample the correct local feature
from feature map, which poses a significant challenge. We
address the problem by setting a virtual camera and further
optimizing the 6D pose under the render-and-compare opti-
mization framework. See supplementary for details.

5. Experiments

In this section, we first introduce the new vehicle dataset
in Sec. 5.1. In Sec. 5.2, we illustrate the reconstruction re-
sults under real environments and quantitative scores on our
dataset compared with two state-of-art baselines. For evalu-
ation in Sec. 5.3, we conducted ablation studies. Finally, we
show results on other object categories to prove representa-
tion generalization in Sec. 5.4. More experimental details
are presented in the supplementary.

5.1. Dataset

To generate synthetic dataset, we collect 83 industry-
grade 3D CAD models covering common vehicle types,
each of which is labeled with 23 semantic key points. These
key points pairs contain semantic correspondences and are
served to evaluate the accuracy of semantic correspondence
in our experiments. We specifically select a commonly seen
car as the vehicle template. To enrich the texture diversity of
our dataset, we assign ten different texture for each model.
To simulate the driving view in real street environment, car
models are randomly rotated and placed in different 3D lo-
cations, and then rendered in high-resolution (2048×1024)
and wide-angle (fov = 50◦) image. We generate images
with high visual fidelity using Physically Based Rendering
(PBRT) [49] system and measured HDRI skymaps in the



Figure 4: Results on in-the-wild images. Monocular input images are shown in the top row. We compare 3D models reconstructed by ours
and contrast works (PIFu and Onet+TF) retrained with our dataset. Two render views are provided to demonstrate reconstruction quality.
Our results achieve great performance in terms of both robustness and accuracy.

Laval HDR Sky Database [32]. Finally, we get a training set
with 6300 instances and a testing set with 2000 instances in
total. Please refer to supplementary for more details.

As for the supervision for geometry reconstruction, we
use the same data preparation method as Onet [42] to gen-
erate watertight meshes and follow the sampling strategy in
DeepSDF [48] to obtain spatial points with their calculated
signed distance value.

5.2. Results and Comparison

We compare our method with two state-of-the-art meth-
ods based on implicit functions. One is PIFu [52] which
leverages pixel-aligned features to infer both occupied prob-
abilities and texture distribution. The other one is Onet +
Texture Field [42, 46], of which Onet reconstructs shape
from the monocular input image and TF infers the color for
the surface points conditioned on the image and the geom-
etry. For fair comparison, we retrain botth methods on our
dataset by concatenating the RGB image and the instance
mask image into a 4-channel RGB-M image as the new in-
put. Specifically, for PIFu, instead of the stacked hourglass
network [45] designed for human-related tasks, ResNet34
is set as the encoder backbone and we extract the features
before every pooling layers in ResNet to obtain feature em-
beddings. For Onet and TF, we use the original encoder and
decoder networks and adjust the dimensions of the corre-
sponding latent codes to be equal to those in our method.

Qualitative Comparison. To prove that our method
adapts to real-world images, we collect several images from

Method FID ↓ SSIM ↑
PIFu* 215.8 0.6962
Onet+TF* 262.73 0.7002
Ours(w/o local feature fusion) 156.8 0.7057
Ours 148.2 0.7208
Ours(w/o joint training) 193.6 0.6902
Ours(MPV as the template) 173.2 0.6895
Ours(coupe as the template) 159.7 0.6983
Ours(sphere as the template) 187.4 0.6833

Table 1: Quantitative Evaluation using the FID and SSIM met-
rics on our dataset. For SSIM, larger is better; for FID, smaller is
better. Our method achieves best in both two terms.

Kitti [41], CityScapes [10], ApolloScape [59], CCPD1,
SCD [29] and Internet. As shown in Fig. 4, our approach
generates more robust results when compared with PIFu,
while recovering much more texture details than the combi-
nation of Onet and TextureField.

Quantitative Comparison. To quantitatively evaluate
the reconstruction quality of different methods, we use two
metrics: Structure similarity image metric (SSIM) [60] and
Frechet inception distance (FID) [23]. These two metrics
can respectively measure local and global quality of im-
ages. The SSIM is a local score that measures the dis-
tance between the rendered image and the ground truth on
a per-instance basis (larger is better). FID is widely used
in the GAN evaluation to evaluate perceptual distributions

1https://github.com/nicolas-gervais/predicting-car-price-from-scraped-
data/tree/master/picture-scraper



Figure 5: Illumination Removal and Material Analysis. Conditioning texture inference with the predicted albedo maps improves the
reconstruction robustness. Then, benefiting from our implicit semantic template mapping, we can assign material information from the
pre-designed template for the reconstructed model and then render realistic images. Note that different specular reflections shown in right
cols are caused by material differences (e.g. metal material body and glass material window), proving our diverse material identification.

Figure 6: Texture Transfer. By extracting shape latent codes from
top row and texture latent codes from left col, our representation
can freely couple shape and texture latent codes to generate new
vehicle instances.

between a predicted image and ground truth. It is worth
noting that both SSIM and FID can not evaluate the qual-
ity of generated texture of 3D objects directly. All textured
3D objects must be rendered into 2D images from the same
viewpoints of ground truth. To get a more convincing re-
sult, for each generated 3D textured model, we render it
from 10 different views and evaluate the scores between
renderings and corresponding ground truth albedo images.
As shown in Tab. 1, our method gives significantly better
results in FID term and achieves state-of-the art result in
SSIM term, proving that our 3D models preserve stable and
fine details under multi-view observations. The quantitative
results agree with the performance illustrated in qualitative
comparison.

We also implement a variant of our method which does
not fuse local features for the purpose of fair compari-
son. As shown in Tab. 1, our reconstruction conditioned
on global latent codes still outperforms ’Onet+TF’, demon-
strating that our representation is more expressive in terms
of inferring the texture on the vehicle surface.

5.3. Evaluation
Evaluation on the disentanglement of representation.

With the incorporation of the implicit semantic template

mapping, our model avoid entangled representations and re-
cover the surface texture in the 2-manifold of surfaces de-
fined in the canonical template filed, thus supporting many
downstream tasks such as texture transfer and editing. As
shown in Fig. 6, we extract shape latent codes from top row
to reconstruct the geometry and extract texture latent codes
from the left col to recover the surface texture, resulting in
plausible texture transfer, which proves the practicality of
our disentanglement of geometry and texture latent spaces.

Evaluation on the joint training strategy. Our method
is able to establish semantic correspondences between dif-
ferent vehicle instances (right part of Fig. 3), attributed in
our joint training strategy. We retrain a baseline network
by firstly train the geometry branch and then train the tex-
ture branch conditioned on a fixed template mapping. As
shown in Fig. 8, without leveraging texture information as
the guidance, the mapping process follows the principle of
shortest distance to establish correspondences and ignores
semantic information. To evaluate the accuracy of semantic
mapping, we utilize the key points annotation in our dataset
and calculate the distance errors between the mapped key
points and the target ones. RMSE score for comparison net-
work is 5.259 while ours is 0.7594, which demonstrates
that the joint training strategy helps establish meaningful se-
mantic dense correspondences between various instances.
Moreover, the decrease of numerical result in Tab. 1 indi-
cates that texture reconstruction quality does benefit from
the semantic template mapping, implemented by geo-tex
joint training strategy.

Evaluation on illumination removal and material
identification. To alleviate the lighting effects of image ap-
pearance, we add an image-translation network to convert
the input color images to albedo maps. The module effec-
tively helps our network remove illumination and shading
effects in 2D image domain and contributes to robust texture
results. We retrain a comparison network by directly feed-
ing original color images into texture encoders. As shown



Figure 7: Representation Generalization. Our model is extended to other object categories, with templates obtained from DIT.

Figure 8: Joint training strategy contributes to semantic template
mapping. Note the semantic misalignment of front/back windows
in the right column.

in Fig. 5, the network without the module tends to generate
noisy results. Furthermore, though material identification
based on monocular image is an ill-posed problem, with
our implicit semantic template, the reconstructed intrinsic
textured models obtain material parameters from the pre-
designed template model and are able to generate realistic
renderings through model relighting, as shown in the right
part of the Fig. 5.

Evaluation on the choice of the template. While our
method select a sedan serving as the template car, to ex-
plore the sensitivity of our method to the choice of the tem-
plate, we conduct three comparison experiments choosing
an MPV, coupe and unit sphere as the template separately.
For ease of comparison, we do not fuse local information
for these experiments. Quantitative results are presented in
Tab. 1. In general, our method is relatively insensitive to
the template model and able to generate meaningful recon-
struction results with different types of templates. We ana-
lyze that this arises from the fact that car shapes are almost
homomorphic to the sphere, hence dense correspondences
can be established for these template surfaces. Specifically,
choosing the model close to the mean mesh within the cat-
egory as the template will cause better performance.

Evaluation on topology-varying reconstruction. As
the template mapping operator is defined in an implicit man-
ner, our method preserves the advantage of implicit func-
tions to represent topology-varying objects. Fig. 9 presents
an example of the reconstruction of a car with a separate
rear spoiler. Results on other objects categories (Fig. 7) il-
lustrates reconstruction cases with genus, the topology of
which differs from the template meshes.

Figure 9: Topology-varying vehicle reconstruction. Our method
is able to represent vehicles with various typologies; see the rear
spoiler of the reconstructed model.

5.4. Representation Generalization

In this section, we extend our representation to other ob-
ject categories. We separately train our model on ”sofa”
and ”airplane” category from ShapeNet [7]. To further
prove our representation power, we also experiment on a
collected bicycle dataset containing about 200 shapes. We
use the template models learned by DIT [65] and conduct
single-image 3D reconstruction experiments on these syn-
thetic datasets. As shown in Fig. 7, our representation is
qualified for generalization to other shape categories.

6. Conclusion

In this paper, we have introduced VERTEX, a novel
method for monocular vehicle reconstruction in real-world
traffic scenarios. Experiments demonstrate that our method
can recover 3D vehicle models with robust and detailed tex-
ture from a monocular image. Based on the proposed im-
plicit semantic template mapping, we have presented a new
geometry-texture joint representation to constrain texture
distribution on the template surface, and have shown how to
implement it with joint training strategy and a novel dataset.
Moreover, we have demonstrated the advantages brought by
the implicit semantic template to latent space disentangle-
ment and material identification. We believe the proposed
implicit geo-tex representation can further inspire 3D learn-
ing tasks on other classes of objects sharing a strong tem-
plate prior. In future, we plan to extend our framework to
handle the task of monocular video based vehicle recon-
struction and leverage temporal information to improve the
accuracy of texture estimation.
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