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Abstract
We present a markerless performance capture system that can acquire the motion and the texture of human actors
performing fast movements using only commodity hardware. To this end we introduce two novel concepts: First, a
staggered surround multi-view recording setup that enables us to perform model-based motion capture on motion-blurred
images, and second, a model-based deblurring algorithm which is able to handle disocclusion, self-occlusion and
complex object motions. We show that the model-based approach is not only a powerful strategy for tracking but also for
deblurring highly complex blur patterns.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Computer Graphics]: Scene Analysis—Time-Varying
Imagery

1 Introduction

In recent years, professional movie and game productions have
shown increasing interest in non-intrusive markerless technol-
ogy to capture human performances that has been developed
in the research community. Performance capture systems record
an actor with a camera array or a combination of cameras and
controlled lighting, and use computer vision algorithms to
reconstruct detailed models of dynamic geometry, texture or
reflectance, e.g., [dAST∗08, VPB∗09, ECJ∗06]. The captured
models can serve as basis for high-quality animation content.

Performance capture approaches, however, are still reaching
their limits when the captured scene is moving extremely
fast, such as during a martial arts kick. The reason is that they
typically rely on standard video cameras that operate at much
lower frame rate than, for instance, specialized marker cameras
in marker-based motion estimation. When capturing rapid
motion, the performance is thus often temporally under-sampled
and the images are motion blurred, such that neither geometry
nor texture or reflectance can be recovered.

Several options exist to overcome the frame rate bottleneck.
Special high-speed video cameras could be used [WGT∗05].
However, they are very expensive, have tremendous bandwidth
requirements, often only capturing to RAM, and require
extremely strong illumination due to their very short exposure
times. Using only a handful of them may already be infeasible.

Arrays of closely-spaced coaxial standard video cameras could
also be used. As shown by Wilburn et al. [WJV∗04] such
systems, triggered in a staggered sequence, can yield temporally
highly resolved video footage. Alternatively, in order to
overcome the strong illumination constraint, they can be run
in a coded sampling fashion to collect more light [AGVN10].
However, in this arrangement, every viewpoint has to be
observed by a multitude of cameras to achieve the desired effect,
resulting in considerable expense of the resulting system. These
approaches are thus, so far, limited to record a single viewpoint.

In this paper, we propose a new 360o high-speed multi-view
performance capture approach that reconstructs rapidly moving
actors with standard lighting and multiple standard video
cameras placed around the scene. Despite being based on
off-the-shelf low frame rate cameras, it allows us to reconstruct
both the shape and the dynamic surface texture at a much
higher effective frame rate than the physical frame rate of each
individual camera, Fig. 1. We purposefully accept and even
exploit the fact that captured video frames are blurred, and use
clever exposure sequencing, model-based scene reconstruction,
and 3D model-based deblurring to recover the scene content
at a very high effective temporal sampling rate. In particular,
we make the following major contributions.

First, the standard video cameras that are placed around the
scene are capturing in a time-shifted exposure sequence, Sec. 3.
Each individual camera’s exposure time is relatively long.
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Figure 1: When recording fast motion with standard video cameras, successive frames recorded with exposure time T are blurred
(a). We propose a method to capture shape and unblurred multi-view textures of rapidly moving scenes from blurry multi-view images
recorded in a temporally staggered order. We can capture 3D scene geometry at a much higher frame rate than the recording rate
of the cameras, i.e., at sub-frames within an original long exposure interval - an overlay of such sub-frame geometries is shown
in (b). Our algorithm also recovers deblurred textures for the sub-frame models (c)-(e).

But the exposure intervals of different cameras do not start at
the same time but in a staggered sequence. We show that by
using 20 cameras recording at 20 fps, we can sample time and
space densely, and capture shape and multi-view texture at an
effective rate of 400 fps.

Second, we use a model-based marker-less approach to capture
the dynamic scene geometry of the human actor at the high
effective frame rate, Sec. 4. This algorithm expects as input multi-
view silhouette images at the effective frame rate of the system.
These effective silhouette images can be computed from the
blurred silhouette images of each video camera through spatio-
temporal intersection based on the staggered exposure sequence.

Finally, the ability to follow scene motion with a 3D shape
template enables us to properly model the image formation
process that leads to blurred video frames. Since we know both,
the scene shape and motion, we can form a hypothesis on the
individual blur kernel for each 3D scene point as it projects
into any of the available camera views. We exploit this feature
to develop a 3D model-based deblurring algorithm which
can handle important effects like occlusion, self-occlusion
and out-of-plane rotation. A robust regularization framework
enables the reconstruction of deblurred textures despite
potential inaccuracies in our scene model, Sec. 5.

The final result of our method is a three-dimensional, dynamic,
completely textured shape model of a human actor at high-speed
frame rates which can be displayed from synthetic view points,
at arbitrary speeds.

2 Related work

Our work touches on a number of important subjects with a rich
number of publications each. We therefore restrict ourselves

to an exemplary overview. The three main approaches to
capture fast motions are high-speed imaging using specialized
hardware, capture using high-speed illumination in controlled
environments, and deconvolution on motion-blurred imagery,
see Wetzstein et al. [WILH11] for a survey.

Specialized hardware solutions suffer from high band-width
requirements, forcing a capture-to-RAM scheme that limits
the capture ability to only a few seconds. Another restric-
tion in multi-view applications is that synchronization of
these cameras is not easily possible. Alternatively, spatial
sensor resolution can be traded for temporal resolution. A
DMD-based implementation [BTH∗10] of the assorted pixels
framework [BEZN05] has recently been demonstrated. In
addition to single camera high-speed imaging, multi-camera
alternatives with staggered exposure capturing strategy have
been explored, e.g. by Shechtman et al. [SCI02, SCI05],
Wilburn et al. [WJV∗04, WJV∗05] and Li et al. [LDXY12].

High-Speed Illumination to picture high-speed events has
been pioneered by Harold Edgerton. Theobalt et al. [TAH∗04]
use photo-cameras and strobe illumination to capture high-speed
motion of an arm and a ball in a single exposure, but do not
recover texture or complex geometry. Recently, it has been
demonstrated that arrays of consumer video cameras can be
synchronized to a virtual frame rate by using arrays of strobe
lights [BAIH09]. However, the virtual frame rate cannot sur-
pass that of the cameras. DLP projectors have been used to code
temporal events for computer vision tasks such as dynamic struc-
tured light [NKY08]. Veeraraghavan et al. [VRR11] show that
using coded strobe illumination combined with sparse recovery
techniques can yield high frame rate videos of periodic events.

Image deblurring methods critically depend on the quality
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of the PSF estimates. Hardware-based blur kernel estimation
can be performed using inertial measurement sensors [JKZS10]
or a dual camera setup [BEN04, THBL10], where one camera
records high spatial resolution/low frame rate video while the
second one provides high frame rate/low resolution video. In
contrast, designed PSFs can simplify and stabilize the deblurring
problem considerably [RAT06]. Levin et al. [LSC∗08] imple-
ment a parabolic camera shake and demonstrate that this way
the PSF can be made invariant to the speed of the object motion.

Purely software-based methods, on the other hand, are referred
to as blind deconvolution methods. They come in different
flavors: single image vs. multiple image methods, spatially in-
variant PSFs vs. spatially varying ones, and methods that assume
some underlying scene model vs. methods that do without. An
example for spatially invariant blind deconvolution for single
images is the work by Fergus et al. [FSH∗06]. In subsequent
work this was improved by considering errors on the estimated
PSFs in a Bayesian framework [SJA08]. A recent example of
multiple image based motion deblurring is [CML07].

Alternatively, the PSF can be estimated directly by detecting
blurred versions of sharp edges. Using differently oriented
edges throughout the image, a spatially invariant blur kernel
can be estimated [JSK08]. Recently, it has been observed
that essentially low-parametric spatially varying PSFs can
be recovered by including model assumptions about the blur
origin. It has been demonstrated that, in the case of a static
scene observed by a shaking camera, a set of homographies
can model the scene sufficiently well for high-quality deblur
results [WSZP10, TTB11]. Ding et.al [DMY10] describe
model-based deconvolution in two dimensions by selecting
a PSF family (linear, parabolic, or oscillating).

Performance Capture, 3D Video and Dynamic Scene
Reconstruction methods aim at recovering a virtual
spatio-temporal representation of a given scene. Several
types of approaches for dynamic scene reconstruction from
multi-view video were proposed (see e.g. [TWdAN07] for an
overview). Geometry-based 3D video methods reconstruct
the scene using some form of shape-from-silhouette or
stereo method [ZKU∗04, WWC∗05, TNM09, FP09] or fit a
template model to the data [CTMS03]. Performance capture
methods extend these ideas, and enable further refined model
reconstruction from video in a spatio-temporally coherent way,
either by a variant of shape-from-silhouette and correspondence
finding, through stereo, or by fitting a deformable template to
the images [dAST∗08, VBMP08, BPS∗08, VPB∗09, CBI10].
In the geometry community, animation reconstruction
approaches [TBW∗12, LLV∗12, BHLW12] mainly consider
point data from dynamic 3D scanners as input, sometimes,
however, exploiting texture information for stabilization
purposes [LLV∗12]. All of these approaches are challenged
by extremely fast motions.

One of the first performance capture approaches to employ high
speed cameras was the method of Wenger et al. [WGT∗05].
The cameras record the images of a performer under changing

illumination from a lighting dome at several hundred fps, such
that - effectively - a complete reflectance field is captured for
successive frames at normal video rate. The video can then be
relit. Later, they extended the approach to full-body and several
cameras, enabling viewpoint change through image-based
warping [ECJ∗06]. The goal in this line of research was to
achieve higher temporal sampling of controlled illumination
to obtain relightable video at a normal effective frame rate. In
our work, we pursue a different goal.

Contributions:

Temporally staggered recording strategies similar to ours have
been proposed previously (e.g. [WJV∗05,WJV∗04] and [SCI02,
SCI05]). Li et al. [LDXY12] used staggered recording from a
multi-view camera system for capturing motions at high speed
with low frame rate cameras. Their strategy differs from ours
in several ways. N cameras are clustered into M groups of syn-
chronized cameras, and a combination of shape-from-silhouette
reconstruction and image-warping is used to synthesize input im-
ages at time instants that have not been sampled. However, their
approach does not produce spatio-temporally coherent scene ge-
ometry, and thus they can and do not address the deblurring prob-
lem for fast motion as we do. Also, their approach struggles with
strong occlusions in the scene, and the effective frame rate gain
is limited to a factor of N/M as opposed to N in our approach.
We use reconstructed approximate geometry to fit the motion
of a template model to obtain more accurate high-speed recon-
structions of the actual geometry. The temporal motion tracking
extracted such can be used as a high-level prior (human body
template model) that can predict blur kernels for a much more
general class of motions than previously employed models. Pre-
vious model-based approaches like e.g. Whyte et al. [WSZP10]
are using rather low-level models (homographies in this case)
which implies a scene that is essentially planar. Correspondingly,
the motions are restricted to rigid body motions of a plane. In con-
trast, we use a fully articulated model for estimating fully three-
dimensional blur paths, respecting occlusion and disocclusion.

3 Acquisition

Our acquisition system consists of N = 20 off-the-shelf Point
Grey Flea 2 cameras running at a resolution of 1024× 768
pixels with a frame rate of 20 fps. The cameras are calibrated,
arranged in two complete rings, and are mounted on a dome of
roughly 6 m diameter, Fig. 2 (a). To ease backgrund subtraction,
we use a green screen background.

The key to high-speed performance capture and model-based
deblurring is our spatial and temporal sampling strategy.
Camera exposures are triggered in a specific staggered timing
sequence as illustrated in Fig. 2 (b). We explain the main design
features of this sampling strategy as follows.

Temporal staggering: Each camera is capturing at
fr = N = 20 fps, and thus integrates for what we henceforth
refer to as a long exposure interval Tl = 1/N ms = 50ms.
Here we account for an additional readout and processing
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Figure 2: Recording Strategy: (a) spatial camera arrange-
ment (for more details please refer to the animation in the
supplementary video), (b) temporal triggering strategy.

time of 2.5ms at the end of each exposure. Naturally, each
of the corresponding long exposed images Ic,i of camera c
at frame index i will show motion blur on rapidly moving
scenes. However, the cameras are not triggered synchronously.
Their exposures are temporally staggered, such that the next
camera in the staggered time sequence starts its long exposure
Ts = Tl/N = 2.5ms after the previous one, see Fig. 2 (b).

Spatial staggering: It is important that the temporal order in
which cameras are triggered covers as much viewpoint diversity
as possible. We therefore make sure that two successively
exposed cameras have a certain distance in space and are
not directly adjacent on the dome. Thus we ensure effective
acquisition of directional motion by avoiding spending too
much samples on views with little spatial variation.

In the following sections, we explain how we can transform
this set of temporally and spatially staggered frames Ic,i that
were captured at fr fps into a set of multi-view silhouette
images that correspond to a much higher effective frame rate
fe = fr ·N. Through model-based marker-less performance
capture, the dynamic scene geometry can then be reconstructed
at the effective frame rate fe. Based on this temporally densely
reconstructed scene model, we can recover deblurred textures
for the captured performance at fe.

4 Capturing Geometry at High Frame Rate

4.1 Silhouette Extraction from Long Exposure Images

Markerless performance capture algorithms [GSA∗09] are
based on silhouette information at the effective reconstruction
frame rate fe. In order to compute these images we are
processing the motion blurred images in a two-step process:
First, we compute silhouette images Sc,i of the long exposure
frames Ic,i, these silhouettes include all potentially foreground
regions, including motion blur, see Fig. 3 (a)-(c). The long
exposure silhouettes can be thought of as the union of all short
exposure silhouettes S′c, j that are needed for the motion capture
algorithm: Sc,i = ∪ jS′c, j, see Fig. 3 (d). In a second step, we
therefore decompose the long exposure silhouettes into their
constituent parts S′c, j by computing silhouettes at the high
effective frame rate fe (see Sec. 4.2). Henceforth index i is
used to denote a long exposure cycle number, index j refers

(a) (b) (c) (d)
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Figure 3: Computing long exposure silhouette images: (a)
captured blurred long exposure image Ic,i. (b) Silhouette
segmentation Sc,i of (a). (c) Overlap image of (a) and (b). (d)
19 short exposure silhouettes S′c, j in a long exposure frame with
a color coding of different high speed silhouette indices j.

to an exposure interval or frame index at the higher effective
frame rate fe. Once the S′c, j are computed, they are fed into a
template-based performance capture approach.

Each original long exposure image Ic,i exhibits significant blur
due to the rapid motion of the person in the foreground, Fig. 3.
A long exposure silhoutte image Sc,i is a binary image whose
value is 1 at every pixel of the potentially blurred foreground,
and 0 otherwise, as Fig. 3(b), an overlay image is as Fig. 3(c).
We compute such silhouette images by subtracting from each
Ic,i a background image Bc that was captured for each camera
prior to recording. Background subtraction is performed in
HSV space to simplify thresholding.

4.2 Computing Silhouettes at High Frame Rate

Silhouette images are reprojections of the 3D scene geometry’s
visual hull into each camera view [Lau94]. If we can reconstruct
the visual hulls V j of the moving scene at fe fps we can thus
generate the corresponding S′c, j through projection. Exact
reconstruction of the visual hulls from our given input images
is of course infeasible. However, due to the spatial and temporal
staggering of the long exposure images, we are able to compute
a very close approximation to the true visual hull sequence, V ′j .

Let’s assume we want to reconstruct V ′t for short exposure
time frame t. As illustrated in Fig. 2(b), such a short exposure
time frame t overlaps with exactly one staggered long exposure
interval of each camera. Let C(t) = (ic1 , . . . , icN ) be the N-tuple
of long exposure cycle numbers for each of the cameras
ck, k = 1..N with which t overlaps. The approximate visual hull
V ′t can now be computed by back-projecting the long exposure
silhouettes Sck ,ick

from all cameras ck at respective cycle index
ick from C(t):

V ′t =
⋂

ick∈C(t),k=1..N

H(Sck ,ick
), (1)

where H(·) reprojects a silhouette into a generalized cone in
space based on the given camera parameters. These generalized
cones are then intersected to obtain the approximate visual hull.
An illustration of the concept is shown in Fig. 4 (a). The high
frame rate silhouette images S′c,t are now trivially obtained by
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(a) (b) (c)

s

Figure 4: Computing high-speed visual hulls: (a) intersecting
the cones resulting from overlapping long-exposure silhouettes
results in an approximation of the high-speed object volume
(dashed region). (b) real high-speed visual hulls, (c) template
model fitted into the visual hulls of (b).

reprojecting V ′t into each camera view. Please note that only
through joint temporal and spatial staggering, such intersection
will result in an approximation of the visual hull at a short time
slice. In most circumstances, this approximation is close to the
true visual hull and thus the true high frame rate silhouettes,
see Fig. 4 (b). Only in some cases, this assumption is violated,
which we discuss in Sec. 7.

4.3 Performance Capture

The images S′c, j serve as input to a template-based marker-less
performance capture approach. In particular, we adapt the ap-
proach by Gall et al. [GSA∗09] to our setting. The template
model for a human actor comprises of a surface meshMwith a
fitted skeleton and skinning weights. This static surface mesh is
created from multi-view images of the actor standing still using
the reconstruction approach of Wu et al. [WLDW10]. From
the same images, we also create a static surface texture for the
template, Cs. Skeleton and skinning weights for this mesh are
semi-automatically created using the same procedure as Gall et
al. [GSA∗09]. For every time step of multi-view high-frame rate
silhouette images S′c, j , the performance capture approach first de-
termines the model pose by finding optimal skeleton pose param-
eters. Subsequently, a silhouette refinement step is performed,
in which the surface mesh is non-rigidly deformed to align with
all silhouette images. Please note that, as opposed to the original
paper [GSA∗09], due to motion blur we are only able to employ
silhouette constraints for tracking and not additional feature
points. Since the approximation of V ′j and thus S′c, j may suffer
from artifacts in regions of fast motion, we decrease the influence
of silhouette regions in the silhouette adaptation step that were
found to move fast after skeleton pose estimation, see Fig. 5 (a).
The end result is a sequence of configurations of the template
surface meshM j , such that the scene geometry at each effective
time frame is properly reconstructed, Fig. 4 (c) and Fig. 9.

5 Reconstruction of Deblurred Textures

In the following, we exploit the spatially and temporally dense
scene description constructed as in Sec. 4 to estimate spatially
varying point-spread functions and to reconstruct deblurred

(a) (b) (c) (d) (e) (f)

Figure 5: Illustration of blur matting algorithm: (a) Seg-
mentation into regions moving at different speeds used in
markerless performance capture, different colors correspond
to different body parts. Sec. 4.3. (b) Long exposure silhouette
Sc,i. (c) Foreground regions F . (d) Trimap. (e) Matte image.
(f) Foreground image rendering after matting.

surface textures for the capture geometry from the blurry long
exposure images.

5.1 Long Exposure Image Matting

In contrast to a binary segmentation, we need to extract for
every pixel in the foreground region the contribution of its
color due to the moving foreground and static background. The
process is known as alpha matting [DW08, TKLS10].

In order to apply alpha matting, we exploit the model information
obtained after high-speed motion capture to generate a trimap,
see Fig. 5. The main idea is to use the intersection of all high
frame rate silhouettes S′c, j that make up a long exposure silhou-
ette Sc,i as sure foreground, i.e.F =∩ jS′c, j where j runs over the
high frame rate indices that are contained in the long exposure sil-
houette. Known background regions are obtained by the inverse
of the long exposure silhouetteB = Sc,i. The region that has to
be matted isF ∪B. For increased robustness we erodeF and
B prior to computing the matting region. With the trimap such
defined we run the matting approach by Levin et al. [LLW07].

5.2 Model-based Deblurring

Standard image-base deblurring methods assume that the
deblurred original (or latent) image can be obtained by
deconvolving the blurred image with the (potentially spatially-
varying) blur kernel or PSF [Ric72]. However, in case the scene
motion is not simple, and there are occlusions and disocclusions
of 3D points occurring during the exposure interval, this image
formation model of the convolution of a single latent image
with a spatially-varying PSF is not valid anymore. Fortunately,
we can exploit the densely sampled 3D scene geometryM j and
instead perform a direct reconstruction of the latent surface tex-
ture as previosuly proposed for texture super-resolution [GC09].
By this means, we are able to properly handle occlusions and
disocclusions of surface points even for complex motions. We
refer to this approach as model-based deblurring.

In model-based deblurring, we are not solving for pixel colors of
a deblurred latent image, but for colors of a set of infinitesimally
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Figure 6: From patch to PSF: (a) The 3D motion of a patch
in one long exposure interval is projected into one camera view
from which we compute (b), an approximation of the patch PSF.

small surface patches that cover the 3D surface of the human
body. The colors of these patches are assumed to be constant
during the exposure interval of each blurred image Ic,i. Our
image formation model now assumes that the color of each pixel
in an image Ic,i is obtained by suitable temporal integration
of the colors of all patches whose projected motion paths ever
pass through that pixel during the exposure interval, taking into
account patch visibility.

The motion path of each patch, when projected into the camera
view while taking occlusion into account, can be thought of
as the PSF assigned to that particular patch, Fig. 6. Based on
these considerations, we can formulate image formation as a
simple linear model of the form

where x is the stacked vector of np colors of patches that are
visible from the camera for a non-zero time interval during the
exposure, while b is the stacked vector of pixel colors in the
(matted) blurred image Ic,i. A is a matrix with np columns and
ni rows, with ni being the number of pixels in Ic,i. In case the
PSF of patch k has an influence on pixel l, i.e., the projected
motion path of k passes through l, Al,k is the contribution factor
of patch k with respect to l. This contribution factor describes
the percentage with which patch k’s color contributes to l in Ic,i.
In particular, Al,k can be computed by considering the integral
over the pixel area over the full exposure period:

Al,k =
∫

Al

∫ t1

t0
χk(x, t)dtdx, (2)

where χk(x, t) is the characteristic function of the projected
area of patch k, Fig. 6 and x is the spatial image coordinate.
Since the patch is moving, the characteristic function depends
on t. The area of pixel l is described by Al , and [t0, t1] is the
exposure interval of the long exposure image Ic,i. We normalize
the contribution factors, so for each pixel, the factors of all
contributing patches sum to 1.

5.3 Model-based Deblur Algorithm

Given the captured high frame rate geometry and the blurred
long exposure images, we can invert the image formation
model, and compute a separate set of surface patch colors Cc,i
for every camera c and for every long exposure frame i. In
practice, we use a finite number of discrete surface patches, and
in the following we describe how they are initialized. Since we
have N subsequent discrete mesh posesM j within each long
exposure interval i, we can reconstruct the individual PSF of

each surface patch † through proper interpolation of the discrete
mesh positions. Given these PSF estimates, we can formulate
deblurred texture reconstruction as a linear least squares
problem including robust regularization terms to account for
possible inaccuracies in the images or reconstructed 3D models.

We solve for the visible patch colors x =Cc,i as follows:

min
x

[
‖Ax−b‖2

2 +λ1 f1 +λ2 f2 +λ3 f3
]

f1 = ∑
i
‖xi‖2

2

f2 = ∑
i

∑
j∈N(i)

‖xi−x j‖2
2

f3 = ∑
i

vi(‖xi−x0
i ‖2

2), (3)

We add three regularization terms to the linear system to over-
come inaccuracies in the estimated PSFs and the patch visibility.
The first term f1 is a Thikonov regularization, penalizing large
norm solutions. The second term f2 enforces smoothness in the
final solution by enforcing color similarity between neighboring
patches in 3D. The third term is a model-based regularizer that
encourages the final color of each patch to be similar to the
color of the patch in the static texture x0 =Cs. Since tracking
errors will have a most deteriorating effect in those regions of
the blurred image Ic,i where fast motion was observed, we adap-
tively weight the static texture regularizer f3 depending on the
speed of the moving patch through the factor vi ∈ {0,1}which
is 1 for patches moving at the maximum observed velocity in
3D and ε = 10−6 for the slowest moving patches. The influence
of each regularization term is shown in Fig. 7. The necessity of
a dynamic texture is shown by the comparison between Fig. 7(b)
and (c)-(f) in highlighted blue rectangle regions around the
object’s abdomen and right leg. The varying geometric details
due to motion, e.g. wrinkles on clothes, can not be revealed in a
static texture, which greatly decreases the realism of the results.
On the other hand, as the misalignment errors (see limitations
in Sec.7) from motion capture artifacts increase, the dominant
regularization term turns out to be the static texture constraint,
which suppresses the small geometric details. The combination
the the three regularizers is essential to achieve good results.

† When creating the set of surface patches two aspects need to be con-
sidered. First, the number of visible patches should roughly correspond
to the number of foreground pixels to make sure the solution to the linear
system is stable. Second, since we are approximating the model texture
by constant-colored patches, the footprint of a projected surface patch
in an image should be smaller than the size of the pixel. Our blurred
images are of size 1024×768, the number of foreground pixels is in the
range of 60000−100000. As a result, we use a tessellated surface mesh
M of around 200000 triangles for performance capture, which should
fulfill the constraints above at all time steps and in all camera views.
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Figure 7: Effect of regularization terms: (a) Blur image, (b) static texture, (c) no regularization, (d) Tikhonov, (e) Tikhonov with
spatial smoothness, (f) Using all three regularizers. Note that the face is recovered well even though the static texture is quite different.

6 Rendering Captured Performances

The outcome of the deblur algorithm is a separate set of colors
for the visible surface patches in each long exposure image Ic,i.
In other words, these colors are constant for each viewpoint c
and long exposure time interval i. We chose this representation
to avoid coupling of the variables across different views due
to the staggered recording scheme. Our final goal, however, is
the rendering of the performance captured surface meshesM j
at the high frame rate fe from arbitrary viewpoints, including
texture detail at the same frame rate exhibiting the true temporal
and spatial variation. We accomplish this goal in two steps: First,
we generate virtual high frame rate videos from the recording
cameras’ points of view. In a second step these are used in a
standard multi-view projective texturing algorithm.

For high-speed video generation, we propose a spatio-temporal
image warping scheme. Let us consider the case of rendering
high-speed video for a specific camera view c′. To synthesize
the output view at some high speed frame index j′ ∈ [i′, i′+1]
that falls in a time interval between two long-exposure indices i′

and i′+1, we render the meshM j′ into the camera viewpoint
c′ with two different textures, namely Cc′,i′ and Cc′,i′+1 where
i′ is the long exposure frame index of camera view c′ that is
temporally closest to high-speed frame time j′, but earlier in
the sequence. This procedure yields two video frames of the
model in the same pose, albeit with a different texture. We apply
optical flow to these two frames and interpolate the final image
by a warped blend.

Fig. 8 shows examples ofM j′ rendered with textures Cc′,i′

and Cc′,i′+1 (subfigures (a) and (b)) and the difference
between these images in the camera view (subfigure (c)).
Warped blending yields the final rendered performance at
each high-speed frame. After generating high-speed video for
each recording camera, the resulting images may be used for
projective texturing of the high-speed model in a free-viewpoint
video style rendering technique [CTMS03].

T/2 T 3T/2

(a) (b)

(d)

(e)

blending

(c)

Figure 8: Temporal interpolation of the deblur results to
achieve high frame-rate textures: (a) and (b) are the deblur re-
sults, (c) being the 2 times differences between these two images.
(d) is the temporally super-resolved model geometryM j′ at
different high-speed frame indices j′. (e) shows the results of
warped blending using (a) and (b) on the intermediate model.

7 Results

In this section we verify our algorithms on 3 real-world test
sets. In addition, we present validation experiments for some
of the sub-steps involved in motion deblurring.

Capture of High-Speed Motion: To demonstrate the
effectiveness of our high speed motion capture algorithm as
well as the motion oriented deblur framework, we captured
different subjects performing high speed motions dressed with
different clothes, see Fig. 9.

Our data sets consist of three sequences of 20-30 captured long
exposure frames each. The three motions include “marching”,
“running” and “spinning”. All sequences were recorded with
20 cameras running at 20 fps using the staggered exposure
framework. The resulting sequences have an effective frame
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rate fe of 20×20 = 400 fps. They consist of between 400 and
600 high-speed multi-view frames each. Some of the captured
performance models, and rendered versions of them with
deblurred textures, can be seen in Fig 9. As one can see, we are
able to reliably capture detailed high-frame rate performance
geometry, as well as plausible deblurred surface textures, despite
very rapid motions and strong motion blur in the original camera
images. The choice of regularization parameters is quite stable.
We produced all results with one common set of parameters for
each sequence. For all sequences, we only used two settings for
each of the parameters: λ1 ∈ {0,0.02}, λ2 ∈ {0.05,0.1}, and
λ3 ∈ {0.06,1.0}, the static texture constraint showing the most
variation. The low parameter was used for the “running” and
“spinning” sequences, whereas the higher setting was necessary
for “marching”. The main reason for using a higher value in the
static texture constraint are inaccuracies in the tracking phase
and resulting imprecise PSF estimates.

Comparison of Image-Based and Model-Based Deblur-
ring: To compare the performance of image-based and
model-based deblurring for the case of a complex motion
with spatially-varying PSF, occlusions and disocclusions, we
synthesized a blur image according to the captured motion
using a static texture, see Fig. 10. We then generated PSFs.
For the image-based deblur case, we computed the 2D PSF for
each pixel in the image from the 3D motion of the geometry
model. In particular, we back-projected each pixel to the model
surface, marked the affected surface patches, and used their
motion paths to generate a spatially varying two-dimensional
PSF. The PSF is the sum of all patch-motions projected back
to the image plane. Occlusion is not taken into account in this
case. We then applied a version of Levin et al.’s code [LFDF07]
that was modified to accept spatially varying PSFs. The results
are shown in the middle sub-images of Figs. 10(b) and (c). As
expected, the results show major artifacts in occlusion regions.

In comparison, our model-based motion deblur method can
achieve high-quality deblurring results given the accurate
motion information (right sub-images of Fig. 10(b)(c)). Given
this analysis, the remaining artifacts in our results, Fig. 9, can
be attributed to inaccuracies in the PSF estimates due to errors
occurring during motion estimation, Sec. 4.

Limitations Our approach is subject to a few limitations.

First, our high speed visual hulls V ′j are computed from a spatial
intersection of the back-projected cones of the temporally
staggered blurry silhouettes, whose accuracy depends on the
number of cameras, the motion speed, and matting accuracy,
etc. Since there are no texture constraints to the performance
capture algorithm, the template model is required to be close
to the input. Furthermore, we can not handle wide garments.

Second, there are ringing and swimming artifacts. The ringing
artifacts are mainly due to the geometries from performance
capture are off and thus there are misalignment between blurry
image pixels and the corresponding PSFs from high-speed
geometry. The misalignment is usually severe in the boundary

of the foreground object. In our deblurring algorithm, high
frequency errors from the above misalignment are dealt with
by 3 regularization terms that are equivalent to “low frequency
filter”, and then it will produce unwanted ringing artifacts. On
the other hand, the swimming artifacts are caused by the insta-
bility of high-speed geometry from performance capture. There
could be weird shaking, jittering, etc. that change randomly
over time, and make different regularization terms to dominant
the deblurring results. Thus, we observe the swimming artifacts.

Third, The regularization in texture deblurring suppresses un-
wanted artifacts, but also suppresses certain detail. However,
our results show that high-speed textures can be recovered at a
sufficient amount of detail for most applications. The current ren-
dering may introduce additional loss of detail through blending.

Discussion: Our work explores the area of inexpensive high-
speed motion capture using setups that are readily available
in a number of research labs today. While more expensive
solutions, like the use of high-speed cameras, could avoid some
of the problems assoiated with this setting, additional problems
(except for the price difference: PtGrey Flea2 – $300, Vision
Research Miro eX1 – $9900 ), like difficulty of synchronization,
very strong illumination requirements, and short capture times
due to capture to RAM cast a doubt on the practical utility of
these imagined systems. Simply using a static texture on the
model, is inadequate since the texture is temporally changing,
not only due to folds and wrinkles, but also due to illumination
changes, facial expressions, etc., all very important cues for
making a performance capture believable and convincing.
Alternative capture strategies like using short exposure times
and a low frame rate will introduce temporal aliasing such that
high-speed, high-frequency motion cannot be resolved. In our
proposed strategy, on the other hand, these motions leave a trace
of motion blur which might facilitate their recovery.

8 Conclusion and Future Work

We presented an approach to capture shape and multi-view
texture of rapidly moving human actors from multi-view
video footage recorded with normal off-the-shelf cameras.
Even though individual camera images are blurred, we can
apply template-based performance capture and model-based
texture deblurring by recording the video frames in a spatially
and temporally staggered sequence. In the end, we obtain
spatio-temporally coherent scene geometry and spatially and
temporally varying surface textures at an effective frame rate
that is an order of magnitude higher than the physical frame
rate of the camera. The reconstructed dynamic scene models
can be used for rendering at very high temporal resolution.

Our results show that the deblurring of complex motion
trajectories involving occlusion and disocclusion, for which
traditional 2D PSF-based descriptions are insufficient, is
possible. We expect that further research into this problem
will lead to improved reconstruction algorithms. As the most
limiting factor, we plan to improve the robustness of our
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Figure 9: Results for three different reconstructed performances (see also accompanying video). Each row shows two results from
two different viewpoints. From left to right: captured blurred image, one of the reconstructed high-frame rate models with the skeleton,
model with deblurred texture.

Figure 10: Image-based vs. Model-based Deblurring: (a) from left to right: synthetically generated blur image based on motion
capture data, deblur results of image-based and model-based deconvolution. Zoom-in on regions in (a), (b) shows deblur results
for constant scene visibility whereas (c) shows a region affected by occlusions. Model-based deblurring can handle complex motion
scenarios where image-based deblurring fails.

approach with respect to the inaccuracies of motion capture,
e.g. by using soft silhouette representations for more accurate
high-speed visual hull computation and by treating the motion
not as fixed, but as an initial guess for the unknown PSFs. Also,
we plan to perform integrated multi-view texture deblurring,
instead of per-camera reconstruction and view interpolation.
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