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Abstract

This paper proposes a new method for Non-Rigid
Structure-from-Motion (NRSfM). Departing from the tra-
ditional idea of using linear low-order shape model for
NRSfM, our method exploits the property of shape recur-
rence (i.e., many deforming shapes tend to repeat them-
selves in time). We show that recurrency is in fact a general-
ized rigidity. Based on this, we reduce NRSfM problems to
rigid ones, provided that the recurrence condition is satis-
fied. Given such a reduction, standard rigid-SfM techniques
can be applied directly (without any change) for the recon-
struction of non-rigid dynamic shapes. To implement this
idea as a practical method, this paper develops efficient al-
gorithms for automatic recurrency detection, as well as for
camera view clustering via a rigidity-check. Experiments
on both synthetic sequences and real data demonstrate the
effectiveness of the method. Since this paper gives a novel
perspective on re-thinking structure-from-motion, we hope
it will inspire other new researches in the field.

1. Introduction
Structure-from-Motion (SfM) has been a success story in

computer vision. Given multiple images of a rigidly moving
object, one is able to recover the 3D shape (structure) of
the object as well as camera locations by using geometrical
multi-view constraints. Recent research focus in SfM has
been extended to the reconstruction of non-rigid dynamic
objects or scenes from multiple images, leading to “Non-
Rigid Structure from Motion” (or NRSfM in short).

Despite remarkable progresses made in NRSfM, exist-
ing methods suffer from serious limitations. Most notably
is that they often assume some simple linear models, either
over the non-rigid shape or over motion trajectories. These
linear models, while are useful for characterizing certain
classes of deformable objects (e.g, face, human pose, cloth),
are unable to capture a variety of dynamic objects in rapid
deformation, which are however common in reality.

This paper presents a new method for non-rigid structure
from motion. Contrary to traditional wisdom for NRSfM,

we do not make a linear model assumption. Instead, we de-
scribe how to exploit shape recurrency for the task of non-
rigid reconstruction. Specifically, we observe that in our
physical world many deforming objects (their shapes) tend
to repeat themselves from time to time, or even only occa-
sionally. In the context of SfM if a shape reoccurs in the
video we say it is recurrent.

This observation of recurrence enables us to use existing
knowledge of multi-view geometry to reconstruct the shape,
if such a recurrence happens and is recognized. At first
glance, this may be thought as a restrictive condition; how-
ever, to satisfy this condition is far easier than one thought.
In fact, recurrent motions are ubiquitous in our surround-
ings, from human walking, to animal running, leaves wav-
ing, clock pendulum swaying, and to car wheels rotating
etc. Many sport games like boxing and judo contain vari-
ous repetitive motions. Having re-occurring movements is
also an important design element used in dance choreogra-
phy and gymnastics. Often, as long as a visual observation
is long enough in time, revisiting a previously-seen scenario
is highly probable.

Other merits of our method also include that: to recover
the shapes of a non-rigid object, one can simply apply stan-
dard Rigid-SfM techniques, without having to develop new
methods. For instance, rigid SfM techniques such as fun-
damental matrix computation, camera pose or PnP, rigid
multi-view triangulation, bundle adjustment and rigid fac-
torization can all be used at no change. Our method is suited
to cases wherever shape seen in one frame repeats itself in
another frame in time. We conducted experiments on syn-
thetic data and real images. Both have validated the efficacy
of our method.

2. The Key Insight
Rigidity is a fundamental property that underpins almost

all works in rigid structure-from-motion. We say an object
is rigid if its shape remains constant over time. For this
reason, multiple images of the same object, taken from dif-
ferent viewpoints, can be viewed as redundant observations
of the same target, making task of rigid SfM mathemati-
cally well-posed hence solvable. In contrast, the shape of
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Figure 1. This composite slow-motion picture of ‘figure-skating’ clearly illustrates the basic idea of our non-rigid SfM method. Despite the
skater’s body poses kept changing dynamically over time, there were moments when she struck (nearly) identical posture, e.g. as indicated
by the two red arrows and two blue arrows. Using a pair of such recurrent observations- albeit distant in time, one can reconstruct the 3D
pose (shape) of the skater at that time instants, by using only standard rigid-SfM techniques.

a non-rigid object changes over time, violating the rigidity
assumption and rendering NRSfM ill-posed.

In this paper, we show that shape recurrency is in fact a
generalized rigidity in the following sense: we notice that
many types of dynamic objects often repeat themselves at
times. Given a video sequence, if one is able to recognize
that a just-seen shape had been seen before, then these two
instances of images can be used as a virtual stereo pair of
the same rigid object in space; therefore any rigid-SfM tech-
nique can be applied to reconstruct its structure.

This is the key insight of the paper. To further illustrate
this idea, consider the picture of Figure-Skating in Figure-1.
The picture is a composite (strobe-type) photograph made
by fusing multiple frames of slow-motion photos, which
vividly captures the dynamic performance of the skater on
ice. Examine carefully each of the individual postures of
the skater at different time steps; it is not difficult for one to
recognize several (nearly) repeated poses.

Despite conceptual our idea is, to actually implement it
as a practical method requires novel and non-trivial (algo-
rithmic) contributions. Specifically, in this paper we de-
velop novel method to convert NRSfM problem to graph-
clustering problem solvable by Normalized-Cut. We will
show how to quickly determine the probability that two im-
ages are projections of the same rigid shape, as well as how
to achieve consistent reconstruction.

3. Problem Formulation and Main Algorithm

Consider a non-rigid dynamic 3D object observed by a
moving pinhole camera, capturing N images at time steps
of t = 1, 2, .., N. Our task is then to recover all the N
temporal shapes of the object, S(1), S(2), .., S(N). To be
precise, the shape of the object at time t, S(t), is defined
by a set of M feature points (landmarks) on the object:
S(t) = [Xt1, Xt2, .., XtM ], where Xti denotes the homo-

geneous coordinates of the i-th feature point of the object at
time t. Clearly S(t) is a 4×M matrix.

Given a pinhole camera with projection matrix P, a single
3D point X will project to a point on the image at position
x by a homogeneous equation x ' PX. For the shape of
a temporally deforming object at time t, we have x(t) '
P(t)S(t),where x(t) denotes the image measurement of the
shape S(t) at time t, and P(t) defines the camera matrix of
the t-th frame.

Collect all N frames of observations of the shapes of the
non-rigid object, at time t = 1, .., N, we obtain the basic
equation system for N -view M -point NRSfM problem:

x(1)
x(2)
...

x(N)

 '

P(1)

P(2)
...

P(N)

 ·

S(1)
S(2)
...

S(N)

 (1)

Definition 3.1 (Rigidity). Given two 3D shapes, S and S′,
defined by their respective 3D landmark points in corre-
spondence. We say they form a rigid pair if they are related
by a rigid (Euclidean) transformation T. Note that a rigid
transformation can be compactly represented by a 4×4 ma-
trix T, hence we have: S′ = TS, ∃T ∈ SE(3).

We use S ≈ S′ to denote that S and S′ form a rigid pair.

Example 3.1 (Rigid Object). The shape of a rigid object remains
constant all the time: S(t) ≈ S(t′), ∀t 6= t′.

Example 3.2 (Periodic Deformation). A non-rigid object under-
going periodic deformation with period p will return to its pre-
vious shape after a multiplicity of periods, leading to S(t) ≈
S(t+ kp), ∀k ∈ N.

Example 3.3 (Recurrent Object). A shape at time t re-occurs after
some δ-time lapse: S(t) ≈ S(t+ δ).



3.1. Rigidity Check via Epipolar Geometry

If two 3D shapes (represented by point clouds) are given,
checking whether or not they are rigidly related is a trivial
task. However, this is not possible in the case of NRSfM
where the shapes are not known a prior. All we have are
two corresponding images of the shapes, and the rigidity-
test has to be conducted based on input images only.

In this paper we use epipolar-test for this purpose. It is
based on the well-known result of epipolar geometry: if two
3D shapes differ by only rigid Euclidean transformations,
then, their two images must satisfy the epipolar relation-
ship. Put it mathematically, we have S ≈ S′ ⇒ x′

>
i Fxi =

0,∀i, where F is the fundamental matrix between the two
images for S and S′, respectively. Note that the RHS equa-
tion must be verified over all pairs of correspondences of
(xi,x

′
i), ∀i.

Also note that satisfying epipolar relationship is only a
necessary condition for two shapes S and S′ to be rigid.
This is because that the epipolar relationship is invariant to
any 4× 4 projective transformation in 3-space. As a result,
it is a weaker condition than the rigidity test, suggesting that
even if two images pass the epipolar-test they still possibly
be non-rigidly related. Fortunately, in practice, this turns
out not to be a serious issue. This is because the odds that a
generic dynamic object (with more than 5 landmark points)
changes its shape precisely following a 15-DoF 3D projec-
tivity is negligible. In other words, there is virtually no risk
of mistaking.

The above idea of epipolar-test looks very simple. As
such, one might be tempted to rush to implementing the
following simple and straightforward algorithm:

1. Estimate a fundamental matrix from the correspondences us-
ing the linear 8-point algorithm;

2. Compute the mean residual error computed by averaging all
the point-to-epipolar-line distances evaluated on key points
in the image;

3. If this mean residual error is less than a pre-defined tolerance,
return ‘rigid’, else return ‘non-rigid’.

Unfortunately, despite the simplicity of the above algo-
rithm, it is however not useful in practice. There are two
reasons: (1)Ill-posed estimation: It is well known that lin-
ear methods for epipolar geometry estimation are very sen-
sitive to outliers; a single outlier may destroy the fundamen-
tal matrix estimation. However, in our context, the situation
is much worse (than merely having a few outliers). This is
because, whenever the two feature point sets are in fact not
rigidly related, forcing them to fit to a single fundamental
matrix by using any linear algorithm can only yield a mean-
ingless estimation, subsequently leading to a meaningless
residual errors and unreliable decision. In short, fitting all
feature points to a single epipolar geometry is ill-posed. In-
stead, in order to do a proper rigidity-test one must consider

the underlying 3D rigid-reconstructability of all these image
points. (2) Degenerate cases: Even if two sets of points are
indeed connected by a valid and meaningful fundamental
matrix, there is no guarantee that a valid 3D reconstruction
can be computed from the epipolar geometry. For example,
when the camera is doing a pure rotation, there will not be
enough disparity (parallax) in the correspondences to allow
for a proper reconstruction–because the two cameras have
only one center of projection- depth can not be observed. In
such cases, the two sets of images can be mapped to each
other by a planar homography, and the fundamental matrix
estimations are non-unique.

Our solution is a new algorithm for rigidity-test, named
“Modified Epipolar Test”, which resolves both of the above
issues: (1) it uses (minimum) sub-set sampling mecha-
nism to ensure that the estimated two-view epipolar geome-
tries (e.g., fundamental matrices) are meaningful; and (2)
it adopts model-selection to exclude degenerate cases asso-
ciate with planar homography. Detailed Epipolar-Test algo-
rithm will be presented in Section-4.

3.2. Main Algorithm
Given the above rigidity-test is in place, we are now

ready to present the main algorithm of the paper, namely
Structure-From-Recurrent-Motion (SFRM).

Algorithm 1: A high-level sketch of our Structure-
From-Recurrent-Motion algorithm

Input: N perspective views of a non-rigid shape
S(t), t = 1, ..N. Choose K, i.e., the desired
number of clusters.

Output: The reconstructed 3D shapes of
S(t),∀t ∈ {1, .., N} up to non-rigid
transformations.

1 for (i = 1, · · · , N, j = 1, · · · , N) do
2 Call Algorithm 2 (i.e., modified-epipolar-test) to

get A matrix whose (i, j)-th entry A(i, j) gives
the probability that the two images i, j are rigidly
related.

3 end
4 [Clustering] Form a view-graph G(V,E, P )

connecting all N views, and the A matrix is used as
the affinity matrix. Run a suitable graph clustering
algorithm to cluster the N views into K clusters.

5 [Reconstruction] Apply any rigid SfM-reconstruction
method to each of the K clusters.

Note that the core steps of the algorithm are A-matrix
computation and graph clustering. Note also, our algorithm
only makes use of rigid SfM routines to achieve non-rigid
shape reconstruction.



4. Modified Epipolar Test
In this section, we describe our modified epipolar-test

algorithm. The output of this algorithm is the probabil-
ity that these two images can be the projections of a same
rigid shape. As discussed in the previous section, we do
so by checking whether or not these two sets of correspon-
dences are related by a certain fundamental matrix, and at
the same time not related by any planar homography. The
latter condition (i.e., excluding homography) is to ensure
3D reconstruction is possible. Our algorithm is inspired by
an early work of McReynolds and Lowe for the same task
of rigidity-checking [20], however ours is much simpler–
without involving complicated parameter tuning and non-
linear refinement. Rigidity-checking was also applied for
solving multi-view geometry problems without via camera
motion [17].

We will proceed by presenting our algorithm description
first, followed by necessary explanations and comments.

Algorithm 2: Modified Epipolar Test algorithm
Input: Two input images, with M feature

correspondences {(xi,x′i)|i = 1..M}
Output: The probability P that the two images are

rigidly related.

1. (Initialization): Set parameters σF , σH , τF , τH .

2. (Estimate fundamental matrices): Sample all possi-
ble 8-point subsets from the M points; Totally there
are
(
M
8

)
such subsets. Store them in a list, and index

its entries by k.

for k = 1, · · · ,
(
M
8

)
do

• Pick the k-th 8-point subset, estimate fund-matrix Fk

with the linear 8-point algorithm.

• Given Fk, compute the geometric (point-to-epipolar-
line) distances for all the M points by Fk, i.e.
dF (x

′
i, Fkxi).

• Convert the distances to probability measures by ap-
plying Gaussian kernel. Compute the product of all
probability measures by:

PF (k) =
∏

i=1..M

exp

(
−d

2
F (x′

i, Fkxi)

σ2
F

)
(2)

end

Find the minimum of all the
(
M
8

)
probabilities: i.e.

PF = min
k∈(M8 )

PF (k). (3)

3. (Estimate homography)

Run a similar procedure as above, for homography es-
timation, via sampling all 4-point subsets l ∈

(
M
4

)
.

The overall homography probability can be computed
by:

PH = min
l∈(M4 )

∏
i=1..M

exp

(
−d

2
H(x

′
i,Hlxi)
σ2
H

)
(4)

4. (Compute overall probability) By now we have both
PF , and PH . Compare them with their respective tol-
erances δF , and δH .
if (PF ≥ τF ) AND (PH < τH ), then

Set P = PF (1− PH), return P .

else
Set P = 0, return P .

end

4.1. Why does the algorithm work?

In Step-3 of the algorithm, we sample subsets of the data
points, each consists of 8 points -minimally required to lin-
early fit a fundamental matrix. This way we avoid forcing to
fit too many points to a single epipolar geometry. If the cam-
eras are calibrated, one could also sample 5 points and use
the non-linear 5-point essential-matrix algorithm for better
sampling efficiency (c.f. [18]).

Once a fund-matrix Fk is estimated from an 8-tuple, we
evaluate the probability of how likely every of the other fea-
ture points (not in the 8-tuple) satisfies this fund-matrix. As-
suming all such probabilities are independent, the product
of Eq.2 gives the total probability Pk of how well this Fk
explains all the M points. Exhausting all

(
M
8

)
subsets, we

pick the least one (in Eq.3) as a (i.e. conservative) estimate
of the rigidity score. In Step-4, we repeat a similar sam-
pling and fitting procedure for homography estimation. The
idea is to perform model-selection [28] to filter out degener-
ate cases. Finally in Step-5, we report the overall probabil-
ity (of rigidity-check for the two images) as the product of
PF and (1 − PH) when PF is sufficiently high (i.e. ≥ τF )
and PH is sufficiently low (i.e. < τH ); otherwise report a
’0’. In summary, our algorithm offers a way to estimate
the rigidity-score as defined by the worst-case goodness-of-
fitting achieved for all tentative fund-matrices for each 8-
tuple, while at the same time away from any homography.

4.2. How to speed up the computation?

One might argue that, computationally, our Algorithm-2
is prohibitively expensive due to its exhaustive subset enu-
meration step (Step-3). For example, when M=100,

(
M
8

)
gives a large number of 186 billions.

Fortunately, below we will show that one can almost
safely replace the enumeration step with a randomized sam-
pling process with much fewer samples, yet at little loss of



accuracy. Specifically, we only need to replace the first line
(of ”For k ∈ [1,

(
M
8

)
]...”) in Step-3 with “Randomly sample

minimal 8-tuples for k ≤ K times..”.
Suppose we randomly sample a subset of 8 points from

N points. Note the total number of combinations is
(
N
8

)
.

Suppose there are about e proportion of valid subsets (i.e. e
is the inlier ratio). By ’valid’ we mean this 8-tuple gives rise
to a good epipolar geometry which explains all data points
well enough. Then the odds (i.e. probability) of picking a
valid 8-tuple by only sampling once is e., and the odds of
getting an outlier is 1 − e. If one samples K times, then
the total odds of getting all K outliers is (1 − e)K . Fi-
nally, the odds of getting at least one valid estimation is
p = 1 − (1 − e)K . As we will show next by using some
numeric examples, this predicted odds can be very high in
practice, suggesting that even a small number of random
samples suffices. Note that this proof is akin to the proba-
bility calculation used in RANSAC.

5. View-Graph Clustering and Block-wise Re-
construction

For a given video sequence containingN views, we con-
struct a complete view-graphG(V,E,A) ofN nodes where
each corresponds to one view. E denotes the set of edges,
andA the affinity matrix in whichA(i, j) measures the sim-
ilarity between node-i and node-j.

After Step-3 of Algorithm-1, we have obtained anN×N
matrix P . We will use this P as the affinity matrix of our
view-graph, i.e. A = P . Clearly, the picture of P provides
a clear visualization that characterizes the dynamic move-
ments of the object in the video. Bright colors in the matrix
indicate at which views a particular shape re-occurred.

Figure-2 (from left to right) depicts for example three P
matrices. From these pictures, one can easily discern that,
the picture from left to right each corresponds to periodic
motion, recurrent motion, and rigid motion respectively.

Figure 2. Examples of P matrices: (from left to right), periodic,
recurrent, and rigid scenarios.

5.1. Spectral Clustering

Given a view-graph G(V,E, P ) with the rigidity matrix
P as its affinity matrix, and choose a suitable number K as
the intended number of clusters, we suggest to use spectral

clustering technique to perform K-way camera view cluster-
ing. If two views are clustered to the same group, it means
the two views are related by a rigid transformation.

Specifically, we use Shi-Malik’s Normalized-cut for its
simplicity. The algorithm goes as follows: First, compute
a diagonal matrix whose diagonal entries are D(i, i) =∑
j P (i, j). Then, form a Symmetric normalized Laplacian

by L = D−1/2PD−1/2. Next, take the least log2K eigen-
vectors corresponding to the second smallest and higher
eigen-values of L and run K-means algorithm on them to
achieve K-way clustering. Some examples are given below.

Example 5.1. For periodic motion,K = 40 (i.e. one pe-
riod):

Example 5.2. For general recurrent motion, K=25:

5.2. Block-wise Rigid Reconstruction

After the spectral clustering, the A matrix will be rear-
ranged to a block-diagonal structure. Each block represents
a cluster of views which are rigidly connected, up to an ac-
curacy about the diameter of the cluster. Therefore, they
can be considered as multiple rigid projections of the same
shape. Hence any standard rigid-SfM technique can be used
to recover the 3D shape. In our experiments specifically, we
use incremental bundle adjustment which adds new frames
gradually to a local triangulation thread.

5.3. Scale Normalization

As each cluster is reconstructed independently, all the
shapes scale ambiguous. To achieve scale-consistent recon-
struction results, we normalize the etc.

6. Results
The inputs to our method are multi-frame feature cor-

respondences, like to many other NRSfM methods (e.g.
[10, 1]). Finding feature correspondences is a difficult task
in itself, especially for non-rigid deformable objects where



self-occlusions may happen frequently. In our experiments,
for synthetic data, the feature correspondences are naturally
provided. For real data, specifically, we used the OpenPose
[4] -a recently developed deep-net based landmark detec-
tion method– for sequences of human pose, face and hand.
For other generic objects we used SIFT matching aided with
manual correction. .

6.1. Periodic walking sequence

This first set of experiments aims to validate that our
Algorithm-1 (and -2) works for real sequence with periodic
movements – which is a special (and simpler) case of recur-
rent motion.

We use a person walking sequence in which the person
walks at a constant speed, and a moving camera is observing
him from different viewpoints, resulting in a nearly periodic
sequence. We apply OpenPose[4] to detect and track 14
landmark points on the person over all 700 frames. Some
sample frames are shown in Figure-3.

For the entire sequence, the rigidity (i.e. affinity) matrix
computed by using our Algorithm-2 is plot in Figure-4-
Left. From this plot, it is clear that there exist strong pe-
riodicity, manifested as the bright bands along the main di-
agonals. Moreover the period can be readily read out as
p=40 frames, despite our algorithm does not make use of
this result. Instead, frames with repetitive shapes are auto-
matically grouped together via view-graph clustering.

Figure-4-middle, and -right, each shows the re-arranged
affinity matrix after spectral clustering, and the final cluster-
ing membership result, where the evident ‘blocky’ structure
clearly reveals the grouping. We then perform a rigid-SfM
for all views within each block. Figure-5 shows some ex-
ample pose reconstruction results; note the poses are in 3D.

So far, our algorithm has only focused on recovering
the non-rigid shape itself, ignoring its absolute pose in the
world coordinate frame. In practice this however can be
easily fixed, provided that the ego-motion of each camera
view can be recovered by e.g. standard rigid-SfM/SLAM
techniques against a stationary background. We conduct
this experiment by first tracking background points, then es-
timating absolute camera poses relative to the background,
followed by Procruste alignment between the absolute cam-
era poses and each reconstructed human poses. A final sam-
ple reconstruction (with both background point clouds and
human poses and trajectories) is given in Figure-6.

Figure 3. A (nearly) periodic walk sequence.

Figure 4. Affinity matrices before, and after spectral clustering
(i.e. N-Cut). The ‘blocky’ structure becomes evident after N-cut.
Right: the final view-clustering result.

Figure 5. 3D reconstruction results

Figure 6. Consistent 3D reconstruction of both dynamic fore-
ground object (and temporal trajectories) and a static background
scene.

6.2. Recurrent dancing sequence

The aim for this second set of experiments is to demon-
strate our new method’s performance on a general (non-
periodic) video sequence which is likely to contain recur-
rent movements.

We choose a solo dancing sequence captured by the
CMU Panoptic-Studio [14]. This dataset contains videos
from multiple camera arrays. We extract a time-consecutive
video from the dataset by randomly “hopping” between
different cameras, to simulate a video as if captured by a
“monocular camera randomly roaming in space”.

This dancing sequence is challenging as the motion of
the dancer is fast and the dance itself is complicated creat-
ing many unnatural body movements. For it, the computed



affinity matrix is shown in Figure-7, clearly there is no obvi-
ous structure. However, after applying our graph-clustering,
we can see clear block-wise pattern (albeit noisy), suggest-
ing that the video indeed contains many recurrent (repet-
itive) body poses. Some example reconstruction results
(along with the discovered recurrent frames) are shown in
Figure-8.

Figure 7. The computed original affinity matrix, and the block-
wise pattern after spectral cluttering on the CMU dancing se-
quence. There is no obvious cyclic pattern in the original affinity
matrix. After graph clustering, more clear recurrence patterns are
revealed.

Figure 8. 3D reconstruction results on the dance sequence.

6.3. Quantitative evaluation

To quantitatively measure the performance of our
method, we use Blender to generate synthetic deformations
with recurrence. We use flying cloth dataset [29] and fold
the sequence by several times to mimic recurrency. Camera
views are randomly generated. Figure-9 shows some sam-
ple frames of the data.

In this sequence, all ground-truth (object shape, camera
poses) are given. Noises of different levels are added to im-
age planes. Our method successfully detects recurrency and
reconstructs the shape as shown in second row of Figure-9.

The reconstruction quality is measured by shape errors
after alignment, as well as the portion of successfully re-
constructed frames. We evaluate on two criteria at different
noise levels. Results are given in Figure-11. Since they are
self-explanatory, we omit further discussion here.

We compare our method with other state-of-the-art
template-free NRSfM methods[1],[7]. The result is shown

‘
Figure 9. Simulated waving cloth in wind and the recovered 3D
shapes.

in Figure-10. In terms of overall reconstruction accuracy
their performances are comparable, while ours is superior
for frames exhibiting strong recurrency.

Figure 10. Comparison: Histograms of reprojection errors by dif-
ferent methods. Here we compare our method with [7] and [1].
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Figure 11. SFRM performance at different noise levels. When
noise increases, the reconstruction error increases whereas the suc-
cess ratio falls. This result shows our method handles increasing
amount of noises gracefully.

6.4. Timing

Figure-12 gives the timing results of our SFRM system
(excluding rigid reconstruction), showing a clear linear re-
lationship wrt. the number of feature points, as well as
wrt. the number of random samples (in algorithm-2), but
is quadratically related to the number of image frames. In
our experiments we chose K -the number of clusters- em-



pirically. For future work we would like to investigate how
to automatically determine K.

We also test our method on face and hand data captured
by the PanopticStudio. Sample results are shown in Figure-
13. Since our used hand and face detectors produced noisy
outputs, only visualizations are provided.
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Figure 12. Timing (in seconds) as a function of #(random sam-
ples), #(points), and #( frames), respectively.

Figure 13. Sample 3D reconstructions on face and hand data.

7. Related work
The idea of our SFRM method is rather different from

conventional NRSfM approaches. For space reason we will
not review the NRSfM literature here but refer interested
readers to recent publications on this topic and references
therein ([7, 22, 15, 8]). Below, we focus on previous works
with similar ideas.

A cornerstone of our method is the mechanism to detect
shape recurrence in a video. Similar ideas had been pro-
posed for periodic dynamic motion analysis [2, 25, 27, 26].
Our work was specifically inspired by [2, 12]. However,
there are major differences. First, their methods assume
strictly periodical motions, and need to estimate the period
automatically [6] or manually [2]. This way, their methods
can only handle limited periodical motions such as well-
controlled walking and running. In contrast, our method
extends to more general cases of recurrent motions, which
include both a-periodic, and re-occurring cases, as well as
rigid ones. Moreover, their methods assume static camera,
and under the the periodical assumption, the target is not al-
lowed to turn around and has to move (walking or running)

on a straight line, capturing only partial surfaces [2] or tra-
jectories [25]. Comparably, our method allows free-form
target movements and camera motions. Finally, our method
is fully automatic, while their methods rely on significant
level of manual interactions.

Our method can be applied for 3D human pose recov-
ery, therefore it is related to many works in this domain,
[11, 24, 23, 21]. In particular, our method is of interest
to those researches which try to lift 3D pose from 2D im-
ages,e.g. [3, 5, 19]. Earlier works in this direction either
requires the integration of knowledge of the bone length
of the target [16], or human pose and shape space priors
[3]. Although in experiments we used 3D human poses,
mainly as exemplar recurrent movements, our method does
not take advantage of any category-specific priors. Rather,
we treated poses as general point clouds in 3D. Another cat-
egory of work on human pose capture relies on the existence
of large-scale pose database for retrieving the most similar
pose based on a 3D-2D pose similarity metric [9, 5, 13].
Their performance is heavily depend on the size and qual-
ity of the database of specific type of targets, while ours
works in general scenarios. Recent deep learning approach
by Martinez et al. [19] shows that a well-designed network
for directly regressing 3D keypoint positions from 2D joint
detection showed good performance. However, they rely on
large amount of training data of specific class, while ours
works without training.

8. Conclusion

We have presented a new method for solving Non-rigid
Structure-from-Motion (NRSfM). It directly extends the
concept of rigidity to recurrency as well as periodicity. With
this new method at hand, one is able to directly use tradi-
tional rigid SfM techniques for non-rigid problems. Key
contributions of this work include a randomized algorithm
for robust two-view rigidity check, and a view-graph clus-
tering mechanism which automatically discovers recurrent
shape enabling the subsequent rigid reconstructions. Finite
but adequate experiments have demonstrated the usefulness
of the proposed method. The method is practically rele-
vant, thanks to the ubiquity of recurrent motions in real-
ity. One may criticize our method won not work if a shape
is only seen once. We admit this is true but argue that it
would be of little practical value to reconstruct any shape
with such a fleeting nature. Our proposed view-graph and
shape-clustering algorithms are examples of unsupervised
machine-learning techniques. In this regard, we hope this
paper may offer insights that bridge SfM research with ma-
chine learning.
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