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Figure 1: Several images of a reconstructed real-world performance rendered from novel viewpoints and under a novel lighting
condition. (Environment map courtesy of Paul Debevec)

Abstract
We present a novel approach to create relightable free-viewpoint human performances from multi-view video recorded
under general uncontrolled and uncalibated illumination. We first capture a multi-view sequence of an actor wearing
arbitrary apparel and reconstruct a spatio-temporal coherent coarse 3D model of the performance using a marker-less
tracking approach. Using these coarse reconstructions, we estimate the low-frequency component of the illumination
in a spherical harmonics (SH) basis as well as the diffuse reflectance, and then utilize them to estimate the dynamic
geometry detail of human actors based on shading cues. Given the high-quality time-varying geometry, the estimated
illumination is extended to the all-frequency domain by re-estimating it in the wavelet basis. Finally, the high-quality
all-frequency illumination is utilized to reconstruct the spatially-varying BRDF of the surface. The recovered time-varying
surface geometry and spatially-varying non-Lambertian reflectance allow us to generate high-quality model-based
free view-point videos of the actor under novel illumination conditions. Our method enables plausible reconstruction
of relightable dynamic scene models without a complex controlled lighting apparatus, and opens up a path towards
relightable performance capture in less constrained environments and using less complex acquisition setups.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

1 Introduction

Capturing real performances of human actors and reproduc-
ing them in virtual environments has been one of the grand
challenges in the fields of Computer Graphics and Computer
Vision in the last few decades. Recent advances in marker-less
multi-view video based capture methods have made it possible
to reconstruct motion, geometry and texture of actors [VBMP08,

GSA∗09, dAST∗08], and create new motions of the perfor-
mances [SGdA∗10] from arbitrary viewpoints. However, recon-
structing a realistic appearance of the models is still challenging.

So far, most methods for rendering captured performances
resort to projective texturing from the input video frames, e.g.
[SH07, MBR∗00]. Rendering a captured scene under new
illumination, however, has not yet been feasible. To overcome
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this limitation, some dynamic scene reconstruction methods
estimate a spatially-varying BRDF of the scene model by
filming such scenes under calibrated studio lighting [TAL∗07].
Other approaches combine scene reconstruction with image-
based relighting techniques [MPN∗02, ECJ∗06] by recording
under an advanced controllable light stage. Despite of the great
advancements in dynamic scene capture technology, these
approaches are fundamentally limited by the fact that they
require complex, expensive and controlled camera and light
setups which only exist in controlled studio environments. For
many practical animation productions in movies or games, or for
recording of 3D video, the requirement of controlled calibrated
lighting is highly obstructive. Essentially, movie professionals
would like to capture performances that can be relit directly
on an arbitrary movie set where lighting can be arbitrary and
greatly vary over time. The importance of this becomes clearer
if one considers that many production sets are actually outdoors.

In this paper we therefore propose a performance capture
method that reconstructs detailed spatio-temporally coherent
dynamic scene geometry and a spatially-varying parametric
surface reflectance model of a human from a sparse set of multi-
view video recordings under general uncontrolled illumination.
Estimating a relightable performance under general lighting is a
hard chicken-and-egg problem. In the beginning, neither shape,
illumination, nor surface reflectance are known. Solving for all
these high-dimensional unknowns in one go is infeasible and
highly ill-conditioned, in particular if high-frequency compo-
nents of illumination, geometry and reflectance are to be recov-
ered [RH01b]. To reach a plausible solution, we therefore resort
to a cleverly designed coarse-to-fine reconstruction scheme that
eventually outputs highly detailed dynamic scene geometry, an
all-frequency model of incident illumination, and a parametric
spatially-varying BRDF model for the moving surface. The in-
terplay of coarse-to-fine steps is designed to keep the individual
sub-estimation problems feasible in terms of computation time
and the signal processing theory of inverse rendering [RH01b].

Plausibly relit performances can be created from multi-view
video footage under general unknown lighting. Besides enabling
performance relighting in general environments, like movie
sets with permanently changing surroundings, this also enables
us to work with multi-view data that was captured in other labs,
and for which the lighting situation was not measured.

2 Related Work

Performance Capture and Performance Editing Our
method builds up on recent progress in multi-view perfor-
mance capture. Several methods from that category employ
vision-based 3D reconstruction, such as shape-from-silhouette
or active or passive stereo [MBR∗00, SH07, WWC∗05].
Model-based approaches deform a shape template such
that it resembles a person [dAST∗08, VBMP08, GSA∗09]
or a person’s apparel alone [BPS∗08] in multi-view video,
which yields spatio-temporally coherent reconstructions. The
approach by [CBI10] makes a weaker a priori assumption by
modeling the scene as a set of moving patches that are tracked
over time. None of the above methods can display a human
performance under new lighting conditions.

Surface and Illumination Estimation By making some
prior assumptions about illumination and reflectance in a scene,
the quality of 3D models reconstructed by image-based methods
can be greatly improved. If illumination is controlled, higher
shape detail can be reconstructed. Hernandez et al. [HVB∗07]
employ temporally alternating color lights for estimating
detailed geometry in dynamic scenes. Vlasic et al. [VPB∗09]
use multi-view high-speed video captured in a controlled
light-stage to reconstruct detailed geometry of a moving human
by means of photometric stereo.

Even if illumination is a priori unknown and uncalibrated,
but if certain general assumptions are met, improved 3D recon-
struction is feasible. Basri et al. [BJK06] describe a single-view
photometric stereo method for static Lambertian scenes using
images taken under multiple lighting situations. [WWMT11]
take multi-view images of a static object with constant albedo,
estimate the incident illumination in spherical harmonic basis,
and perform shading-based refinement based on an initial
stereo reconstruction. [WVL∗11] extend this approach to a
spatio-temporal framework that handles moving objects with
piecewise constant albedos, and [WVT12] extend it to a sce-
nario with varying illumination. However, these approaches are
limited to reconstructing approximately Lambertian surfaces.

More general reflectance models have also been considered
in the context of shape refinement. Using multi-view images
under known illumination, [YPS10] estimate a parametric
BRDF model and exploit this for surface refinement. [Geo03]
use photometric stereo to capture static shape and BRDF of
a face from multiple images illuminated with a point light
from unknown directions. [GCHS05] reconstruct shape and
spatially-varying BRDF via photometric stereo from images
under controlled lighting. Carceroni et al. [CK02] capture a
moving surfel model and per-surface reflectance data of a face
from multi-view video footage.

In our work we build up and extend on recent progress in
shape reconstruction under general unknown illumination, in
order to capture high-frequency illumination and reflectance
in dynamic scenes under general lighting.

Reflectance Estimation and Relighting In the past, a
variety of approaches have been proposed for image-based
estimation of reflectance models for static scenes. Having a
shape model, samples of surface reflectance can be recorded
by capturing images of the object from varying outgoing
and incident light directions with a calibrated point light. An
analytical model of surface reflectance, such as a parametric
BRDF, can now be estimated for the whole surface or for every
surface point individually, e.g. [SWI97, LKG∗03, MPBM03].
Given a shape model and some general prior assumptions
about lighting [YM98], or given geometry and calibrated
lighting [YDMH99], the spatially-varying BRDF of a scene
can be found via inverse global illumination. Given a manually
designed model of the geometry and lighting, BRDF estimation
from a single image is feasible [BG01]. [TAL∗07] extend this
concept to scenes with a moving human. They reconstruct a
shape and motion of the actor using template-based motion esti-
mation approach from multi-view video recorded under the light
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Figure 2: Overview of the method, illustrating the steps for geometry reconstruction (1 and 2b), lighting estimation (2a and 3),
reflectance estimation (4), and final performance relighting (5).

of two calibrated spot lights. From the data, they estimate a para-
metric BRDF model for each vertex. However, their 3D models
are very coarse which has a negative influence on the final result.

An alternative approach to relighting is image-based methods
that do not reconstruct an analytical reflectance model but
perform relighting by proper combination of a set of input
images taken under different illuminations. [DHT∗00] capture
facial reflectance fields using a controlled light stage. Einars-
son [ECJ∗06, WGT∗05] extend this concept to dynamic scenes,
using a fast light stage and high speed cameras for recording.
However, the complexity of their setup restricts relighting to a
single camera viewpoint [WGT∗05], or requires the motion to be
simple and periodic if a viewpoint change is desired [ECJ∗06].
In contrast, our algorithm can estimate relightable versions
of general human performances under general uncontrolled
lighting that can be displayed from arbitrary viewpoints.

An important component of our approach is an algorithm
for estimating the incident illumination based on a refined esti-
mation of scene geometry. For this purpose, we need to properly
parameterize the environment map of incident illumination.
Low-frequency illumination can be efficiently represented using
Spherical Harmonics (SH), as was shown by Ramamoorthi
and Hanrahan [RH01a] and several other papers. The SH basis
has also been used in the signal processing theory of inverse
rendering [RH01b]. Spherical harmonics can only represent low
frequency illumination or reflectance effects; aliasing occurs
around high-frequency illumination or reflectance effects.
Hence, Ng et al. [NRH04] proposed to use a Haar wavelet basis
to model high-frequency lighting and reflectance effects. Using
wavelet-based lighting and an assumed subspace of BRDFs,
the surface reflectance of a static object can be estimated using
images from community image databases [HFB∗09]. We also
subsequently solve a variety of inverse rendering problems
and combine the advantages of the spherical harmonics
representation and the wavelet representation for incident
illumination in a coarse-to-fine strategy.

3 Overview

Input to our system is a multi-view video sequence of a moving
actor captured using a sparse set of Nc synchronized cameras
running at standard frame rate (Nc typically between 8 and

9). The cameras are expected to be geometrically calibrated.
They are also assumed to have linear response (if exact response
curves are available, they are used), and color matching across
views is done during pre-processing. However, we do not
impose strict requirements concerning the scene illumination.

Given this input data our algorithm reconstructs high reso-
lution spatio-temporally coherent geometry, surface reflectance
and incident illumination. As estimating all parameters simul-
taneously in high accuracy would be too difficult, we gradually
refine the estimations over several steps of the pipeline as shown
in Fig. 2. Firstly, we reconstruct a faithful yet relatively coarse
spatio-temporally coherent model of an actor from multi-view
video (Fig. 2 step 1, Sec.4.1). Secondly, using this coarse scene
geometry, we reconstruct a coarse estimate of low-frequency
diffuse surface reflectance and incident lighting in spherical har-
monics. Given an estimate of diffuse material and low-frequency
lighting, we can spatio-temporally refine the surface geometry
to recover previously missing fine-scale shape detail (Fig. 2 step
2, Sec.4.2). Thirdly, we use the now available more detailed
high-frequency shape model to compute an all-frequency
representation of the incident illumination in the wavelet
domain (Fig. 2 step 3, Sec.5). Finally, we use the high-frequency
illumination model to estimate a spatially-varying parametric
BRDF model for the dynamic shape which can also represent
high-frequency reflectance effects (Fig. 2 step 4, Sec.6).

4 Geometry Reconstruction

To keep the surface reconstruction problem tractable, we first
track a smooth template to obtain the coarse low-frequency
mesh reconstructions for each time frame, Sect. 4.1. Then
we perform spatio-temporal surface refinement at each frame
to obtain the high-frequency temporally varying geometry
component, which is similar to [WVL∗11] but develops a new
spatio-temporally coherent material segmentation method.

4.1 Low-frequency Geometry Reconstruction

We reconstruct an initial low-frequency estimate of the
time-varying geometry of the actor using the performance
capture method of [GSA∗09]. It uses an initial shape template of
the human that comprises of a surface mesh M and a kinematic
skeleton with associated skinning weights. In our case, the
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surface mesh is obtained from a static laser scan, but can also be
obtained via image-based reconstruction from the multi-view im-
age data. Our surface meshes typically have around Nv = 80000
vertices. We purposefully smooth out high-frequency surface
geometric detail from the mesh before tracking to ensure that
we only reconstruct low-frequency components at this stage.
The performance capture algorithm automatically reconstructs
the initial set of coarse surface meshes Mt

c for each time-step
t. They represent the coarse motion and shape of the actor, but
lack high-frequency surface detail, Fig. 3(b).

4.2 High-frequency Geometry Reconstruction

To recover fine-scale time-varying scene geometry, we employ a
variant of [WVL∗11]. We use the coarse scene geometry Mt

c and
the input video frames to estimate the incident illumination and a
coarse piecewise-uniform surface albedo map at each time-step.
In this step, we assume that the surface reflectance at each point
on the surface is Lambertian (a constraint we will relax at a
later stage in our pipeline) and that incident illumination can
be represented using a low-order SH representation. Also, even
though the diffuse surface albedo may vary arbitrarily in general
scenes, in most cases it is fair to assume that there is a finite
number of basis materials [HFB∗09, TAL∗07].

We assume the surface albedos belong to a set of k distinct
materials {dt

1, . . . ,d
t
k} and want to determine the diffuse albedo

labels aaat ∈ {1, . . . ,k} of the vertices. In [WVL∗11], the ma-
terial segments are obtained by a graph-based segmentation
method before estimating lighting and albedo [FH04]. While
the diffuse segmentation obtained with their approach suffices
for the purpose of shape refinement, we require more accurate
albedo estimates that are also suitable for our parametric re-
flectance estimation, where preservation of spatio-temporally
coherent material boundaries is critical. We therefore develop
a new method that generates a segmentation which uses a con-
sistent set of materials for each time-step, preserves boundaries
between materials on the surface, and is able to represent the
potential shifting of material over the surface. This is caused for
example by shifting apparel (Fig. 3(c)). Assuming the material
segmentation aaat−1 of the previous frame is given, we segment
the mesh of the current frame by finding the least energy con-
figuration of the Markov-Random-Field (MRF) defined as:

ψ(aaattt) = ∑
i∈Mt

c

(φ(O|ai)+ ∑
j∈N(i)

φ(ai,a j)), (1)

where N(i) is the neighboring vertex set of vertex i, φ(ai,a j)
is a smoothness term that takes the form of a generalized Potts
model [SZS∗08], and φ(O|ai) is a likelihood data term which
impose individual penalties for assigning a albedo label to
vertex i according to the observation O. The data term combines
two terms: The first one penalizes different albedo color from
the assigned material, and the second term is the albedo label
prior, which penalizes different labels in consecutive time-steps.
The MAP-MRF energy function in Eq. 1 is minimized via graph
cuts [SZS∗08].

Given the labels aaat ∈ {1, . . . ,k} of the mesh at time t, we
now solve a global MAP inference problem that updates the

(a) (b) (c) (d) (e) (f)

Figure 3: Geometry Reconstruction. (a) Captured image,
(b) coarse geometry from performance capture, (c) material
segmentation, (d) average albedo map, (e) refined geometry,
(f) computed environment map using SH.

albedo values {dt
1, . . . ,d

t
k} for each label and simultaneously

estimates the incident illumination using a SH basis (Fig. 3 (d)
and (f)), as described in [WVL∗11].

The albedo estimation is performed for each RGB color
channel. Considering that the color ambiguity between lighting
and albedo can not be totally solved without other assumptions,
we initially assume monochromatic illumination and solve
for monochromatic incident illumination. As this may have
an influence on later stages in the pipeline, we ask the user
to provide a reference color for single visible material patch
(usually gray), and update the SH light color accordingly
(similar to manual white balancing).

Having estimated illumination and albedo, the coarse
geometry of each frame is now refined by solving another spatio-
temporal MAP inference problem as described in [WVL∗11].
The result of fine geometry estimation are not only the per
time-step refined meshes Mt

r with refined geometry gggttt , but also a
set of piece-wise uniform diffuse albedo maps dddt and incident il-
lumination estimates lllttt that we use to initialize the all-frequency
lighting estimation (Sec. 5) and BRDF estimation (Sec. 6).

5 All-frequency Lighting Estimation

Given a model of shape, illumination and surface reflectance,
the rendering equation describes the local surface light
transport [Kaj86]. If incident illumination is given in discretized
form as an environment map l with i entries, this equation takes
the form:

I(x,ωo) = ∑
i

fr(x,ωo,ωi)v(x,ωi)l(ωi)(nx ·ωi), (2)

where ωi and ωo are the incoming and outgoing light directions
at surface location x. I(x,ωo) is the outgoing radiance in
direction ωo. fr is the bidirectional reflectance distribution
function (BRDF) for the incident illumination from direction
ωi at position x and the outgoing direction ωo [HFB∗09], v
is the visibility map of point x, l(ωi) is the light intensity of
the environment, and nx is the vertex normal.

In order to estimate non-Lambertian high-frequency
reflectance properties of the surface, it is necessary to know
the full-frequency incident illumination. However, the SH
illumination estimated in Section 4.2 only represents a
low-frequency approximation. To overcome this limitation, we
refine the illumination estimation in each color channel using
a wavelet representation that can model all-frequency lighting.

We combine the BRDF fr(x,ωo,ωi), visibility functions
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v(x,ωi), and the cosine term (nx ·ωi) from Eq. 2 into T (ωo),
and rewrite the light transport in the matrix form:

I(ωo) = T (ωo)L, (3)

where T (ωo) is the two dimensional Nv×m transport matrix
of the captured surface under view direction ωo, and I(ωo) and
L are column vectors of sizes Nv and m for radiance intensity
and incident illumination. Here, m is the number of pixels in the
environment map. Estimating the incident illumination directly
is untractable due to the large number of coefficients to be esti-
mated. Instead, we now use a 2D Haar wavelet basisW [NRH04]
to represent the transport matrix and simplify the problem:

I(ωo) = Tw(ωo)Lw, (4)

where

T (ωo) = Tw(ωo)·W T ,L =W ·Lw. (5)

In the Haar wavelet domain even high-frequency illumination
effects can be represented using a much less number of
coefficients, thus dim(Lw)<< dim(L). This keeps the inverse
rendering problem of solving for the incident lighting tractable.
Using the new basis, we estimate the all-frequency lighting
environment as the minimizer Lw of the energy:

EL = ∑
j∈Nv

∑
c∈V( j)

(∥∥I(Fc(i))−Tw, j(ωo, j(c))Lw
∥∥+

γ1 ‖W ·Lw−S·LSH‖+ γ2 ‖TV (W ·Lw)‖1

)
. (6)

Here, I(Fc( j)) denotes the captured radiance of vertex j
as seen from camera image Fc, and ωo, j(c) is the outgoing
light direction from the vertex to the pixel Fc( j) in camera c.
Tw, j(ωo, j(c)) is the transport matrix for vertex j and outgoing
direction ωo, j(c).V( j) are the cameras in which surface point j
is visible. S is the SH basis matrix defined in the spatial domain.
LSH is the spherical harmonic coefficients of the illumination
estimated previously, and TV (·) is the total variation of the
spatial environment map.

Estimating the illumination from the images using only
the first term in Eq. 6 is insufficient, as in the general case the
problem is ill-posed, and noise may have a starkly deteriorating
influence [RH01b]. Because of this we include the previously
estimated SH basis illumination LSH as regularizer, and add
a smoothness constraint on the environment map. To prevent
oversmoothing of the lighting estimation, we minimize the total
variation [Li11], which preserves the high-frequency structure
of the lighting but prevents noise. For incident illumination,
we solve the intensity in each color channel respectively. Please
see the supplementary documents for extensive comparisons
with other lighting estimation methods.

Minimization In practice, we do not reconstruct a
wavelet lighting estimate for every time-step of video, but
for a representative subset of time-steps. This is a valid
compromise between computation time and potential temporal
or location-dependent variation in incident illumination, as
discussed in more detail in Sec. 6.

So far, we have not defined what BRDF fr to use when
minimizing Eq. 6. From low-frequency geometry and lighting

(c) (d)(a) (b)

Figure 4: Estimated lighting. (a) Ground-truth environment
map, (b) low-frequency estimate in spherical harmonics,
(c) all-frequency estimate assuming diffuse BRDF, (d) our
approach: all-frequency estimation using full Phong BRDF.

estimation, we merely have a diffuse estimate of surface
reflectance. Using that diffuse albedo distribution directly, how-
ever, is not ideal. It mostly captures low frequency effects and has
low-bandwidth, which limits the high-frequency illumination ef-
fects that can be estimated [RH01b]. To capture high-frequency
illumination, we would ideally like to assume a full Phong
model with diffuse and specular (high-frequency) components,
for its compact representation while maintaining a reasonable
accuracy. Up-to-now this model is not available. To solve this
chicken-and-egg problem, we solve for Lw in two steps:

First, we use the approach from Sec. 6.1 to estimate a set
of per-segment Phong BRDF parameters on the surface Mr(tr).
This also gives us an initial coarse estimate of high-frequency
specular components. The reason for this is that we consider
visibility, and thus local shape variation and occlusion, during
low-frequency lighting estimation. Therefore, the SH representa-
tion also encodes some higher frequency effects that are needed
to capture at least a rough estimate of specular reflectance. We
now initialize the solution of Eq. 6 by using those BRDFs to set
up the transport matrices. This yields a faithful reconstruction
of high-frequency lighting. Fig. 4 validates these steps on a
synthetic sequence (see also Sec.8). While direct reconstruction
of wavelet lighting with a diffuse BRDF (Fig. 4(c)) already
leads to improved incident lighting estimates compared to
SH estimation (Fig. 4(b)), our two-step procedure (Fig. 4(d))
with the intermediate reconstruction of a Phong model leads
to even better results with better localized light source distri-
butions. Iterating this two-step procedure may lead to further
improvements. However, in our experiments we found these to
be marginal. Therefore, we typically resort to only one iteration.

6 Parametric Reflectance Reconstruction

Given the estimate of the all-frequency illumination and detailed
time-varying geometry, we now estimate the non-Lambertian
reflectance of each surface point. To this end, we estimate
for each location x on the mesh surface at each time-step the
parameters of a Phong BRDF model,

fr(x,ωo,ωi) = ρ
x
d +

ρ
x
s

nx ·ωi
(rx

x,i ·ωo)
α

x
, (7)

where ρ
x
s is the specular albedo, α

x the specular exponent, and
rx,i = 2(nx ·ωi)nx−ωi is the reflected direction of ωi about nx.
The Phong model features a low-frequency diffuse component
and a specular lobe to model high-frequency reflectance. We
selected the Phong model since it enables us to represent
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diffuse and specular surface reflectance based on a small set
of parameters. It is thus a good compromise between modeling
strength and computational complexity.

The Phong BRDF model requires us to estimate three
material parameters for each point on the surface of the object,
namely diffuse albedo ρ

x
d , specular albedo ρ

x
s , and a specular

exponent α
x. Optimization of these parameters from a single

set of multi-view images of a certain time-step is in general an
under-determined problem since we would not acquire enough
reflectance samples for each surface point. While estimation of
the diffuse low-frequency reflectance is in most cases feasible
from a single time-step of video, this does not hold for the
high-frequency component where more samples are required.
To solve for the reflectance at each surface point, we make use
of the following assumptions:

The surface of a human actor usually does not contain an
arbitrary number of materials, but rather a set of base materials.
Specular albedo and shininess will be very similar in each
material segment and not vary over time, while the diffuse
albedo will exhibit stronger variations in a segment due to
small alignment errors and micro-scale surface detail that is
not captured by our surface geometry and may also change
over time. This observation was also used in some other
previous work, e.g., [LKG∗03, YDMH99]. We use the material
segmentations obtained for each time-step in Sec. 4 to identify
the set of base materials, and their potential variation in spatial
layout over time. By this means, we can also represent certain
temporal variation, such as the shifting and stretching of clothing
on the body. Further on, we have full temporal correspondence
for each vertex over time, and the actor is moving in the scene
relative to camera and lighting, we can expand the set of samples
by accumulating samples over time for each surface point.

Based on these assumptions, we divide the reflectance
reconstruction into two different steps. First, we estimate a
single average BRDF for each material segment using a subset
of the time-steps of the input sequence. Then, based on the
average BRDF parameters of each segment, we update the
diffuse albedo of each vertex for each time-step to allow more
accurate reconstruction of potential dynamic effects, e.g., due
to cloth shifting, facial expressions or moving micro-structure.

6.1 Per-segment Reflectance Estimation

We first estimate a complete Phong BRDF for each material
segment, using Or = 3 reference time-steps out of the entire
length of the input video sequence. Subsampling is necessary
as estimating the parameters on all input frames would be too
expensive. The time-steps are selected such that the poses of
the actor across them are sufficiently different, and the actor’s
positions relative to the cameras are sufficiently varying. This
way, an expressive set of reflectance samples is assembled.
The time-steps are currently selected manually, but a simple
automatic procedure would also be possible. We estimate
the reflectance parameters ρ

K
d , ρ

K
s and α

K for each segment
K ∈ {K} by minimizing the following energy function:

EK = ∑
f∈Or

∑
x∈K,c∈Nc

1
Nv(K)

‖I(ωo,x(c, f ),ρK
d ,ρ

K
s ,α

K)

Figure 5: Average BRDF per material segment. (a) Input
image, (b) diffuse albedo, (c) specular albedo (both for red
channel), (d) specular exponent. All values are scaled to
[0.3,0.8], and shown in gray scale. Note the plausibly captured
high specularity of the print on the t-shirt.

−Fc(x, f )‖+λ

∥∥∥ρ
K
d − ρ̄

K
d

∥∥∥ . (8)

Here I(ωo,x(c, f ),ρK
d ,ρ

K
s ,α

K) is the result of evaluating the
rendering equation (Eq. 2), at vertex x at time-step f with the cur-
rent BRDF parameters. ωo,c(x, f ) is the outgoing light direction
from x towards camera c at time-step f . I(ωo(x, f ),ρK

d ,ρ
K
s ,α

K)
is dependent on the high-frequency incident illumination esti-
mate Lw( f ) that we reconstruct for each time-step f separately
using the method described in Sec. 5. This way we can cope
with certain temporal changes in the illumination, but we can
also compensate for the fact that light sources are not infinitely
far away from the actor in indoor environments; thus lighting
environment maps are position-dependent. Nv(K) is the number
of vertices assigned to material K, and Fc(x, f ) is the radiance
of surface point x at time f as measured from camera image Fc.
Please note that we only consider camera images in which a ver-
tex is visible, which was left out of the above equation for better
readability. ρ̄

K
d is the average of the diffuse reflectance values

which we recovered earlier for material K during low-frequency
lighting estimation and geometry refinement, Section 4.2. As
stated before, the estimation of reflectance parameters is influ-
enced by the quality of the available samples and the accuracy of
the estimated incident lighting. In either of them, inaccuracies
and noise may exist. We therefore use ρ̄

K
d as a regularizer since

the diffuse albedos found during low-frequency lighting estima-
tion can serve as a guideline. λ is a weighting factor. We use the
Levenberg-Marquardt algorithm to optimize Eq. 8. To ensure
that the estimated albedo values are not negative, we rewrite

ρ
K
d = (βK

d )
2,ρK

s = (βK
s )

2,αK = (βK)2. (9)

The end result is an average, non-time-varying BRDF parameter
set for each material (Fig. 5).

6.2 Per-frame Diffuse Update

Based on the per-segment reflectance estimation, we update the
diffuse albedo for each time-step to obtain a spatially and tem-
porally varying reflectance. Given the per-material reflectance
parameters, we first render the surface under the captured envi-
ronment, and then minimize the difference from image-based in-
tensity value to optimize the spatial-varying diffuse component.

To ensure that our albedo values are spatio-temporally
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consistent, we include information from a window of T
neighboring frames into the optimization. This formulation
over the temporal domain also lets us estimate albedo values
for surface points that are not visible in any of the cameras in
the current time-step (see video for visualization of the dynamic
diffuse albedo). The energy function to update the diffuse
albedo ρ

x
d(t = f ) at time-step f and at surface point x is:

Ex =
f+T
∑

t= f−T
∑

c∈Nc

β(x, t,ωo, f )‖I(ωo,x(c, t),ρx
d( f ),ρx

s ,α
x)

−Fc(x, t)‖+λ

∥∥∥ρ
x
d( f )−ρ

K
d

∥∥∥ , (10)

where β(x, t,ωo, f ) is a weighting factor to adjust the influence
of frame t from view point ωo. We use ρ

K
d - the previously

estimated diffuse albedo per-material K as a regularizer. The
weighting factor β(x, t,ωo, f ) allows us to control the influence
of the input images on the estimation. It penalizes regions with
high occlusions in the geometry (measured by the ambient
occlusion term γ(x, t)), as these are usually dark and noisy. On
the other hand, we want to give higher weights to image points
directly facing the camera, as they are more robust to small
errors in the reconstructed geometry. Hence, the weighting
factor takes the form:

β(x, t,ωo, f ) = (ωo ·nx(t)) · (1− γx(t)). (11)

7 Performance Relighting

The final result of our reconstruction pipeline is a sequence of
high resolution spatio-temporally coherent triangle meshes,
including an estimated BRDF for each surface point at each
point in time, and the incident illumination of the recorded
performance. Please note that the BRDF data are temporally-
varying for two reasons: the spatially-varying distribution
of materials (even though per-material specular reflectance
stays the same), and a per-time-step re-estimation of the
low-frequency illumination. We can now use this data to create
novel virtual performances under an arbitrary new environment
lighting lnew and (potentially moving) camera cnew.

To ensure interactive performance for our renderer, we use the
median-cut algorithm [Deb06] to create n importance sampled
directional light sources that approximate the environment
map lnew. We render the geometry under each light source in
parallel using a GPU based renderer for a given camera cnew,
using shadow mapping to generate shadows; and combine the
images into a final relit image.

8 Results and Discussion

We reconstructed geometry, reflectance and illumination from
three multi-view video sequence (see Tab. 1 for sequence
lengths). The sequences kungfu (Fig. 1 and Fig. 8, row 1 )
and dance (Fig. 8, row 2) were reconstructed with 9 cameras
in our multi-view video studio (more results can be found in
the supplementary document). We used general arbitrary studio
lighting which was not controlled or designed in any specific
way. Cameras recorded at a resolution of 1296×972 pixels, and
at a frame rate of 45 fps; they were placed in a roughly circular

(a) (b) (c) (d) (e)

Figure 6: Quantitative evaluation. (a) Relighting result
(RRe f ) under a novel illumination using ground-truth BRDF
parameters, (b) SH based BRDF relighting RSH , (c) wavelet
based BRDF relighting R f ull , (d) difference image between
RRe f and RSH , (e) difference image between RRe f and R f ull
(difference images scaled by a factor of 4 for better visibility).

arrangement around the scene. The samba multi-view video data
set was downloaded from the web [dAST∗08] (see supplemen-
tary document and video). Its recording was thus not under our
control, and no information about incident illumination for that
particular scene is available. The sequence is shot from 8 cam-
eras running at 24 fps and at a resolution of 1004×1004 pixels.

The results show that our algorithm is able to capture geom-
etry, reflectance and illumination in a believable way. Plausibly
relit performances can be rendered from arbitrary new view-
points and under novel environment lightings. Please note that
for the samba sequence we reconstruct geometry with our own
approach and do not use the geometry provided by [dAST∗08]
since their geometry reportedly does not reconstruct the true
high-frequency shape detail. In all our results, small-scale time-
varying surface detail is plausibly captured and relit, such
as folds in clothing (Fig. 8 bottom row). In particular, high-
frequency reflectance effects are captured, as for example the
specularity in the print of the t-shirt in the kungfu sequence, and
the slight specularities in the skin and other fabrics in the dance
sequence (see also Fig. 5). Our approach does not assume static
per-vertex reflectance, and can thus also handle changing facial
expressions or shifting apparel to a certain extent. Also from the
samba sequence which was captured outside of our lab, plausi-
ble relightable performances can be reconstructed. It is essential
to watch the supplemental video to see the results in motion.

Performance Reconstructing all data of a single sequence
comprising 945 frames and 9 input cameras takes 118.2 hours
using a single threaded unoptimized implementation on a
standard PC (timings for further sequences can be found in
Table 1). Low-frequency geometry estimation (step 1) requires
∼ 1 minute per frame, high-frequency geometry estimation
(including SH illumination estimation)∼ 5 minutes per frame,
wavelet lighting estimation ∼ 6 minutes per frame (only
for representative frames), and final BRDF reconstruction
∼ 1.5 minutes per frame. The rendering of our reconstructed
sequences using a simple GPU based renderer with a median-cut
of 256 light sources runs at∼ 4 frames per second on a modern
desktop graphics card.

Quantitative evaluation To evaluate our approach quan-
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titatively, we generated a 100 frame synthetic sequence of a 3D
model from 10 virtual cameras under time varying illumination.
We manually specified BRDF parameters for the surface, so
that ground truth Rre f would be available. Using this synthetic
sequence, we analyze the importance of our various algorithmic
steps in the following (see also Sec. 5 and Fig. 4).

To emphasize the importance of reconstructing high-
frequency incident illumination (see Sec. 5), we compare our
full all-frequency reconstruction pipeline R f ull against Phong
BRDF reconstruction that uses only low-frequency SH-based
illumination RSH estimation. The reconstructed BRDF param-
eters of RSH have an average error of (0.0392,0.0591,23.846)
for ρd , ρs, and α respectively, while BRDF parameters for
R f ull are estimated more accurately with an average error of
(0.0119,0.0311,4.147) (please note that the domain of ρd
and ρs is [0,1], while the values of α can get much larger).
The biggest improvement can be found in the more accurate
estimation of the specular components, which is very important
for a plausible visual appearance and is one of the major benefits
of our approach.

To evaluate the perceived difference, we also relight the
reconstructed models under a new lighting using the estimated
Phong BRDF parameters and compare them against the
ground-truth. The average pixel difference in grey scale of
RSH and Rre f at 0.0623 is higher than the corresponding value
for R f ull at 0.0168, where the intensity range is [0,1]. This
reduction in average error results in more accurately relit
specular highlights on the surface (Fig. 6). For this sequence,
we estimate the all-frequency illumination for each frame
respectively to handle the time varying illumination. Please refer
to the video and supplementary document for further results.

Ground-truth comparison on real world data We also
validated the accuracy of our reconstruction and relighting
approach on real world data. We captured a performer and the in-
cident illumination in two different environments, Fig. 7(a) and
(d). Using our full pipeline, we reconstructed the surface geome-
try, BRDF and incident illumination from the input images under
the first lighting condition, Fig. 7(a), and relit the estimated ge-
ometry with the ground-truth environment map, Fig. 7(b). Up to
some blurring introduced by small calibration and geometry in-
accuracies, the relit result closely resembles the original image.

We then relit the reconstructed model using a different
captured environment map, Fig. 7(c), for which we also
captured a ground truth image of the performer in a similar pose,
Fig. 7(d). Please note that fine surface details such as wrinkles
will be different in images (c) and (d) as the 3D geometry was
reconstructed from the input pose in Fig. 7(a), which is similar,
but not identical to Fig. 7(d). Note that we purposefully did
not apply our full reconstruction pipeline, to the sequence in

Sequence Frames Cameras Processing Time
kungfu 945 9 118.2h
dance 460 9 57.6h
samba 192 8 25.7h

Table 1: Details on each reconstructed sequence.

(a) (b) (c) (d)

Figure 7: Ground-truth comparison: (a) Input image captured
under environment. (b) Reconstruction relit with environment.
(c) The same reconstruction as (b) relit with environment. (d)
Ground truth camera image caputred with environement.

Fig. 7(d), but estimated the geometry and reflectance entirely
from Fig. 7(a). We then only matched the model’s pose to
prevent any bias. Despite these unavoidable differences in ge-
ometry, the relit result is very similar to the ground truth image,
showing that our algorithm captures the surface reflectance of
a scene accurately and generalizes to other illuminations.

Further evaluation We experimentally validated all steps
of our pipeline and confirm that our high-frequency reflectance
and lighting estimation provides the best results (see supple-
mentary material for details). We are able to reconstruct higher
quality geometry and lighting compared to [WVL∗11], who
only estimate diffuse materials and low-frequency illumination
(see supplementary document Sec. 2). We also validated that it is
feasible to apply our pipeline to scenes with time-varying light-
ing (see supplementary material Sec. 1). Allowing temporally
varying incident illumination also allows us to compensate for
small variations in illumination in the recording volume, which
may be cause due to the assumption of infinitely distant lighting.

8.1 Discussion and Future Work

Even though our full pipeline cannot guarantee fully-accurate
reconstructions of geometry, reflectance, and illumination, our
results nevertheless are plausible and are of a high visual quality.
The geometry and reflectance are spatio-temporally coherent,
and the estimated illumination captures the main components
of the real ground-truth illumination.

However, the approach still is subject to some limitations.
Due to calibration inaccuracies in the cameras, noise in the
input images, and simplified assumptions in the reconstruction
process, our geometry will not be accurate up to millimeter
scale. If errors are larger, this may lead to ghosting artifacts
in the reconstruction. We are also limited by the resolution
of the input videos. We cannot reconstruct reflectance and
geometry smaller than a pixel’s size. This also limits the
image resolution and zoom level at which performances can
be rendered convincingly. Super-resolution approaches may
be feasible and we plan to investigate this in the future.

Our reconstruction currently considers only direct illu-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



G. Li, C. Wu, C. Stoll, Y. Liu, K. Varanasi, Q. Dai, C. Theobalt / Capturing Relightable Human Performances underGeneral Uncontrolled Illumination

Figure 8: Results of our algorithm from different input scenes. The first two rows show from left to right: Single input camera view,
reconstructed geometry, relit performance from input camera view, and relit performance from novel view. The bottom row shows
closeups on the characters, highlighting the reconstructed and relit fine geometry details and specular reflections (Environment
maps Grace Cathedral and St. Peter’s courtesy of Paul Debevec).

mination coming from infinitely far light sources. This is in
general not true, but the negative influence of this assumption
on the reconstructions is reduced by considering local visibility
and the ambient occlusion term in the BRDF estimation. We
acknowledge that more advanced segmentation approaches
exist that could be used to separate local and global effects.
Estimating lighting for each color channel may lead to
overfitting, as it is difficult to separate albedo from illumination
color. However, in our experiments the system was able
to separate the colors accurately on both real and artificial
sequences (see supplementary material). The Phong model
used in our BRDF estimation is not suitable for all input
materials. For example, the appearance of human skin exhibits
subsurface-scattering effects which cannot be captured by a
simpler model and may lead to reconstruction errors. We plan
to investigate more complex BRDF models in the future.

Our estimation is dependent on acquiring a sufficient variety
of appearance samples for each surface point under varying
incident lighting and outgoing viewing direction. We achieve
this through the motion of the model relative to the environment.
However, if the performer’s motion is too limited or certain parts
of the body are always in shadow, the reflectance estimation
will be inaccurate. Finally, the performance capture approach
we currently use [GSA∗09] expects background segmentation
and may not directly work in arbitrary environments. However,
we believe it can be extended to outdoor environments.

9 Conclusions

We presented an approach to capture relightable human
performances from sparse multi-view video footage that was
recorded under uncontrolled illumination. By capturing scene
geometry coarsely, and subsequently solving a sequence of
carefully-designed inverse rendering problems, we are able
to capture highly detailed dynamic shape, high-frequency scene
illumination, and detailed spatially and temporally varying
surface reflectance. Our captured performances can be plausibly
rendered from arbitrary new virtual viewpoints and under
arbitrary new incident lighting. In addition to the theoretical
insights, our algorithm has several advantages from an appli-
cation point of view: It enables relightable performance capture
without complex controllable light setups, and can be applied
to multi-view video captured in other labs. Even though all our
examples were captured indoors, we believe that our work paves
the way for relightable performance capture on outdoor sets.
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