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Abstract

Multi-person total motion capture is extremely chal-
lenging when it comes to handle severe occlusions, dif-
ferent reconstruction granularities from body to face and
hands, drastically changing observation scales and fast
body movements. To overcome these challenges above, we
contribute a lightweight total motion capture system for
multi-person interactive scenarios using only sparse multi-
view cameras. By contributing a novel hand and face boot-
strapping algorithm, our method is capable of efficient lo-
calization and accurate association of the hands and faces
even on severe occluded occasions. We leverage both pose
regression and keypoints detection methods and further
propose a unified two-stage parametric fitting method for
achieving pixel-aligned accuracy. Moreover, for extremely
self-occluded poses and close interactions, a novel feedback
mechanism is proposed to propagate the pixel-aligned re-
constructions into the next frame for more accurate associa-
tion. Overall, we propose the first light-weight total capture
system and achieves fast, robust and accurate multi-person
total motion capture performance. The results and experi-
ments show that our method achieves more accurate results
than existing methods under sparse-view setups.

1. Introduction
Marker-less motion capture, due to its great potentials

for behaviour understanding, sports analysis, human anima-
tion, video editing and virtual reality, has been a popular
research topic in computer vision and graphics for decades.
Within this research field, total motion capture, pioneered
by [22] using an extremely dense-view setup (hundreds
of cameras), shows impressive results of simultaneous cap-
ture of multi-person total interactive behaviours including
facial expressions, body and hand poses, and has aroused
widespread interest in computer vision community. How-
ever, this work [22] suffers from expensive and sophisti-
cated hardware setup and low run-time efficiency.

Recently, to reduce the capture complexity, more and
more researches try to perform total motion capture from
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Figure 1. Our lightweight total capture system produces expressive
human models with sparse multi-view cameras.

only a single image or video [41, 55, 13, 45, 35, 64]. By
either optimizing a parametric models like SMPL-X [41]
and Adam [22] ( [55]) or regressing the model parame-
ters directly from the input images [13], these methods
even achieve real-time total motion capture performance for
single-person [45, 64]. However, it remains difficult for the
monocular methods to handle severe occlusions and chal-
lenging poses under multi-person interactive scenarios.

To guarantee both lightweight setups and robust perfor-
mance, we propose the first lightweight total capture system
using only sparse multi-view cameras. However, extending
the existing monocular total capture methods to sparse-view
multi-person total capture is not trivial. Although the incor-
poration of multi-view observations may resolve the depth
ambiguities for monocular methods, the severe occlusions
caused by complex-poses and multi-person interactions will
significantly deteriorate the performance for current total
capture methods. Specifically, the main challenges include:
i) hand/face association across multiple views under dras-
tically changing observation scales and unstable detection
results, ii) pixel-aligned fitting between the reconstructed
3D model and the input images, and iii) robust and accurate
body association under severe occlusions even for close in-
teractions. To resolve all the challenges above, we propose,
as far as we know, the first method to achieve fast, robust
and accurate multi-person total motion capture using only
light-weight sparse-view cameras.

First of all, compared with the relatively fixed body part
scales and satisfactory occlusion-free view point in monoc-
ular single-person total capture cases [41, 55, 13, 45, 64],



sparse multi-view setups suffer from hand/face fragments
on account of severe occlusions, blurs on hands and even
fingers by fast limb movements, and varying hand/face
scales across different cameras. Moreover, it remains chal-
lenging to associate hands correctly when different hands
are located very closely on an image. To resolve these
challenges, we propose a novel hand and face bootstrap-
ping algorithm to extract accurate body part features effec-
tively from the sparse and multi-scale images for accurate
association. Benefiting from the recent progress in multi-
person skeleton pose capture [62], the skeleton-level results
are utilized to guide the following object-detection network
for more robust and accurate detection. Moreover, we in-
troduce the cross-modality consistency and cross-scale con-
sistency to filter unexpected detection results of fragments
caused by occlusions or improper view points.

Secondly, using only the pose-regression methods or the
key-point detection methods cannot yet guarantee accurate
parametric model fitting. Firstly, pose-regression methods
[13, 45, 64] are able to reconstruct decent hand gestures
in self-occlusion cases, but these one-shot methods cannot
guarantee pixel level alignment with 2D joint positions on
the image. On the other hand, keypoint-detection meth-
ods [41, 55] are capable of providing pixel-aligned geo-
metric features for visible joints, but may need heavy post-
processing optimizations, which is quite sensitive to the ini-
tialization and usually fails due to self-occlusion. To fully
leverage the advantages of both categories and avoid their
drawbacks, we propose a new unified two-stage paramet-
ric fitting method, in which we leverage the pose-regression
result as the initial value to accelerate the convergence for
parametric model fitting based on the detected keypoints,
and finally achieves pixel-aligned fitting accuracy without
losing the efficiency.

Last but not least, for extremely complex poses and close
interactions, even 4D association [62] may fail in the body
association step, which is an inherent and natural limita-
tion for sparse multi-view setups. To this end, we propose
a feedback mechanism in which the reconstructed pixel-
aligned human parametric models in the previous frame are
propagated into the current frame for enhancing soft visi-
bility information and finally achieve accurate association
result. Benefiting from this novel feedback mechanism, our
method is able to capture accurate human behaviours even
under scenarios with severe occlusions and close interac-
tions.

Our contributions can be concluded as:

• A new hand and face bootstrapping method that involves
the body-level skeleton guidance for more accurate body
part localization and self-validated consistency scores to
filter out the noise of fragmented detection results by un-
expected view points or occlusion observations (Sec. 4).

• A new unified two-stage parametric fitting method that
fully utilizes both pose-regression and keypoint-detection

methods to produce accurate pixel-aligned 3D human
models with expressive motion (Sec. 5).

• A new feedback mechanism that propagates the accurate
reconstruction into the next frame to further improve the
association accuracy especially on the severe occluded
occasions (Sec. 6).

2. Related Work
2.1. Total Motion Capture

Total motion capture methods, which aim at marker-
less multi-scale human behaviour capture (including body
motion, facial expressions and hand gestures), have shown
great potentials in human 4D reconstruction and high-
fidelity neural rendering [42, 49, 28, 63]. As the pioneering
method of total motion capture, [22] achieved promising
human behaviours capture results under the setup of hun-
dreds of cameras, however, this method relies on the expen-
sive and sophisticated hardware and is therefore hard for
applications. On the other end of the spectrum, to achieve
lightweight and convenient capture, many works [41, 55,
13, 45, 35, 64] focused on total capture from a monocular
setup. Monocular total capture [55] and SMPLify-X [41]
optimized parametric human models (SMPL-X [41] and
Adam [22]) to fit with the 2D detected keypoints. Choutas
et al. [13] directly regressed the parameters of SMPL-X
[41] from a single RGB image and refined the captured
results of head and hands subsequently. Pose2Pose [35]
combined global and local image features for more accu-
rate prediction. FrankMocap [45] regressed parameters of
hand and body poses separately and finally integrated two
parts into a unified whole body output. Zhou et al. [64] ex-
ploited the motion relationship between body and hands to
design the network and achieved real-time monocular cap-
ture. Overall, although current monocular methods could
achieve plausible human total capture performance, they
still suffer from depth ambiguity and occlusions.

2.2. Skeleton-based Pose Reconstruction
Single-view 2D and 3D pose estimation methods [54,

43, 19, 16, 9, 12, 26, 58, 1, 34, 23, 39, 33, 60] have been
widely explored in recent years, however, they suffer from
severe occlusions and ambiguity and cannot produce high-
confidence results. To alleviate the occlusion and produce
more accurate reconstruction, many works aimed to recon-
struct human poses from multi-view input. On the first
branch of this direction, some approaches [17, 50, 32, 57,
31, 27, 25, 40] preformed temporal skeleton-based track-
ing for each frame, but these methods suffer from imperfect
initialization and accumulated errors. On another branch,
cross-view matching methods associated correspondences
(e.g., human instances and keypoints) from different view-
points and finally reconstructed 3D pose for each performer.
Some works utilized 3DPS models to solve 3D joint posi-
tions implicitly by skeletal constraints [3, 4] or body part



detection [15]. Joo et al. [21] utilized 2D detection from
dense multiple views to vote for possible 3D joint posi-
tions. Dong et al. [14] proposed a multi-way matching al-
gorithm to guarantee cycle consistency across all the views.
Zhang et al. [62] jointly formulated the temporal track-
ing and cross-view matching as a 4D association graph and
achieved real-time performance. Tu et al. [51] proposed
to directly operate in the 3D space while avoiding incorrect
decisions in each viewpoint. Lin et al. [30] presented a
plane-sweep-based approach to perform multi-view multi-
person 3D pose estimation without the explicit cross-view
matching. Even though these methods are able to capture
3D human poses using skeletons, they cannot reconstruct
full body behaviours, i.e., facial expressions, hand motions,
and body surfaces.

2.3. 3D Hand Reconstruction

3D hand reconstruction is an essential sub-problem in
total capture. Many works [47, 8, 48, 56, 65, 20, 37] that
focused on 3D hand pose estimation from a single RGB im-
age have been proposed. Recently, more and more works
aimed at recovery of a 3D hand mesh [18, 24, 10] or di-
rectly regressing the pose and shape parameters of a para-
metric hand model (MANO [44]) [2, 6, 61, 66, 11]. How-
ever, these methods only focused on single hand reconstruc-
tion while ignoring the interaction between hands. Moon et
al. [36] proposed InterHand2.6M, a large-scale two hand
interaction dataset. Several researchers have explored the
problem of pose estimation under two hand interacting sit-
uation [38, 52, 29, 59], but the problem of hand pose esti-
mation under multi-person interacting scenario with more
hands involved is still unsolved.

3. Overview
3.1. Main Pipeline

As shown in Fig. 2, given multiple synchronous and cal-
ibrated RGB videos as input, our pipeline works in a frame-
by-frame manner, and outputs a series of parametric human
models naturally combining body posture, hand gesture and
facial expressions by the following steps:

1. 4D Body Association (Sec. 3.2): Given multi-view in-
put, we associate the 2D keypoints and triangulate 3D
body skeletons using 4D association [62].

2. Hand and Face Bootstrapping (Sec. 4): With the body
skeletons, we perform hand and face bootstrapping to
extract their 2D bounding boxes efficiently and also as-
sociate them to different subjects among different views.

3. Two-stage Parametric Fitting (Sec. 5): Then we fit
parametric human model SMPL-X [41] to these posture,
gesture and expression features in a two-stage manner to
achieve efficient and accurate pixel-level alignment.

4. Feedback Mechanism (Sec. 6): Finally, the tracked hu-
man models are propagated into the 4D association step

of the next frame to further improve the association ac-
curacy especially on severe occluded occasions.

3.2. 4D Body Association

As a building block of our method, the 4D association
[62] contributes a real-time multi-person skeleton tracking
framework with sparse multi-view video inputs. By taking
the tracked 3D joints from the previous frame and the de-
tected 2D key-points in current frames as graph nodes Dj ,
4D association algorithm introduces a series of connecting
edges: single-view parsing edges EP , cross-view matching
edges EV and temporal tracking edges ET , and finally for-
mulate a unified association graph G4D for optimizing the
multi-view body association problem effectively.

4. Hand and Face Bootstrapping
We introduce a hand and face bootstrapping method to

(i) extract local body part regions of interest (RoI) and de-
tection from full-body inputs and (ii) eliminate incorrectly
associated matches using the proposed non-maximum sup-
pression (NMS) method. Body-level semantic features,
hand pose regressions and keypoint detections are inte-
grated into our pipeline. Note that the proposed bootstrap-
ping methods for hand and face are quite similar, but the in-
teractive hand behaviour is much more frequent under prac-
tical multi-person scenarios. So in this section, we mainly
introduce the hand bootstrapping method which is more
representative, and the method for face is similar.

Specifically, given sparse multi-view image inputs at
frame t, we firstly leverage the 4D association algorithm
(Sec. 3.2) to get the associated 2D body keypoints in each
view and the triangulated 3D body skeletons. Secondly, we
indicate preliminary screened RoIs {RoIcα} through body
skeleton semantic information, then a lightweight object-
detection network is utilized for further localizing tight and
reliable RoIs {RoIcβ} in these initiatory screened areas to
boost the key point detection and parametric regression
performance of hands. However, there may exist several
RoIcβ corresponding to different hands in a single RoIcα
due to close interactions and bad view directions as shown
in Fig. 4 (b). This will lead to severe ambiguity in the
later hand association step. To eliminate these ambigu-
ous RoIs, we propose a double-check non-maximum sup-
pression (NMS) method to guarantee both cross-modality
(between key point detection and parametric regression of
hands) and cross-scale (between body reconstruction and
hand reconstruction) consistency. Next, we will introduce
the 2D hand localization and association in detail.

4.1. 2D Hand Localization

We conduct 2D hand localization in a coarse-to-fine
manner: first generating initial bounding box for each hand
according to the reconstructed 3D body skeleton and se-
mantic information, and then refine the initial bounding



Figure 2. Method overview. Initially, we take multi-view RGB sequences and body estimation results as our inputs. Skeletons of each
individuals are constructed by 4D association(Sect. 3.2). After that, we utilize our limb bootstrapping framework to localize(Sect. 4.1) and
associate(Sect. 4.2) body part. After that, we optimize parametric SMPL-X models from all these outputs(Sect. 5). Finally, our feedback
mechanism(Sect. 6) is introduced to boost the body association performance in next frame with the reconstructed human model.

boxes using the iterative hand detector [53]. Note that this
strategy helps us filter out the inconsequential areas effi-
ciently at the coarse level, thus reducing unnecessary com-
putation and accelerating the hand localization process.

For generating the initial bounding box for a hand, we
leverage the reconstructed 3D body skeleton to interpolate
the center of hand and construct a 3D bounding sphere with
constant radius to handle size variations of hands on 2D im-
ages caused by perspective projection. We then generate the
initial 2D bounding box according to the projected center
and radius of the 3D bounding ball in each view. Specif-
ically, we estimate {RoIck,α} of person k in each view c
under the guidance of the reconstructed body skeletons:

ocp = Pc(Op), rcp =
fc ·R
dc(Op)

,

{RoIck,α} = {Rect(ocp, r
c
p)|zcp = 1, p = 1, 2, ..., P},

(1)

where Op and R is sphere center and radius. Op could be
simply extrapolated from the 3D position of wrist and el-
bow, and R is a constant parameter defined in terms of real-
istic physical scale. ocp and rcp are the projected circle center
and radius in view c, respectively. fc is the focal length of
camera c, Pc(·) is perspective projection function, and dc(·)
is the distance to camera’s image plane. An indicated vari-
able zcp is introduced for whether the wrist joint of person p
has been assigned a 2D keypoint detection in view c.

Since current hand keypoints detection and regression
methods still rely on tight and accurate bounding boxes for
achieving good performance, we further refine the initial
bounding boxes using the iterative hand detector [53]. As
shown in Fig. 3, we utilize that one-pass hand detection net-
work to further extract more precise RoIs {RoIck,β}. We
demonstrate that our two-step localization method outper-
forms the light-weight detector (e.g., 100DOH [46] used in
FrankMocap [45]) on both the speed and accuracy (Fig. 11).

Figure 3. Illustration of hand localization and detection. (a) Re-
constructed body skeletons using [62] in advance which will guide
us to focus on key areas {RoIck,α} (blue dotted line rectangle).
(b) After that, a light-weight network is utilized for regressing
more precise and tight bounding boxes {RoIck,β}(red solid line
rectangle). Then we clipped {RoIck,β} from the full-body image
and then feed them to both the pose-regression network and the
keypoint-detection network. (c) The regressed hand gesture which
is decent but not pixel-aligned accurate enough. (d) 2D Keypoints
are accurate but suffer from depth ambiguity.

4.2. Hand Association

Since 2D body joints have been associated and 3D body
skeletons of different subjects have been triangulated in pre-
vious steps, in this section, we mainly focusing on how
to assign correct bounding boxes of hands to the 3D wrist
joints in each view.

We leverage classical non-maximum suppression (NMS)
[5] algorithm but proposed two novel consistency scores to
effectively filter out ambiguous RoIs. Specifically, cross-
modality consistency score ζck and cross-scale consistency
score ξck are proposed to judge which match will be finally
retained. In practice, hands usually come close or even
overlapped in some side views, and interactions among in-
dividuals will lead to more ambiguities. Specifically, con-
sidering the case that RoIck1,α ∩ RoIck2,α ̸= ∅, k1 ̸= k2,
as illustrated in Fig. 4, RoIck1,β2

(dark blue) and RoIck2,β

(red) share the same sub-region, which results in associa-
tion ambiguities. Inspired by traditional NMS algorithms in
object-detection pipeline, we come up with a self-validated
association algorithm to filter out redundant RoIcβ and re-



Figure 4. Illustration of hand association algorithm. (a) Body
skeletons obtained by [62]. (b) Association ambiguity may hap-
pen when RoIck1,α

∩RoIck2,α
̸= ∅, k1 ̸= k2. Blue and red dotted

line rectangles are RoIck1,α
and RoIck2,α

, respectively. Then 3
tight bounding boxes RoIck1,β1

(light blue), RoIck1,β2
(dark blue)

and RoIck2,β
(red) are further extracted from the two initial rect-

angles. We can observe that the right hand lies in the overlapping
area of RoIck1,α

and RoIck2,α
, leading to redundant proposals and

confusing partition. (c) and (d) show that pose-regression network
is specific for one chirality input. (e) is the result of heatmap-based
detector which is invariant with chirality. (f) shows that after our
double-check NMS procedure, the correct distributed RoIck1,β1

are retained and the false one RoIck1,β2
is discarded.

tain the correct match. Firstly, for each view c, we locate all
redundant RoIs by calculating Intersection of Union (IoU)
from total individuals’ hands proposals. Secondly, we cal-
culate cross-modality consistency score ζck and cross-scale
consistency score ξck for each RoI proposal.

The first metric, cross-modality consistency score ζ, is
used to penalize the inconsistency between different detec-
tion modalities. As shown in Fig. 4 (c), (d) and (e), the
heatmap-based feature is invariant with respect to flipping
translation, but pose-regression network needs right chi-
rality assurance for achieving reasonable results. This di-
vergence can help us to distinguish the left or right asso-
ciation ambiguities. Denote Jh = 21 as the hand joint
number, Sh

regr ∈ R2×Jh as 2D hand joint positions from
pose-regression network, Sh

dect ∈ R2×Jh as the output of
keypoint-detection network, and w, h as the size of RoIβ .
Then ζ is formulated as

ζ =
1

Jh

Jh∑
j=1

max(0, 1−
2∥Sh

regr,j − Sh
dect,j∥2√

w2 + h2
). (2)

On the other hand, the second metric, cross-scale con-
sistency score ξ, is formulated to punish unreasonable wrist
misalignment between the local hand estimator and global

body estimator. Denote Sb
wrt ∈ R2 as the associated 2D

wrist position from full-body detections, Sh
dect,jw

as wrist
joint position by local hand keypoints detector. Finally, ξ is
defined as

ξ = max(0, 1−
2∥Sb

wrt − Sh
dect,jw

∥2√
w2 + h2

). (3)

Finally, we sum up these two scores as confidence measure-
ments to apply the NMS algorithm to reserve the one with
the highest score. We demonstrate that our double-check
NMS method helps to improve the association accuracy in
confusing situations.

5. Two-stage Parametric Fitting
We observe that previous methods usually utilize either

parametric pose regression [45] or heatmap-based keypoints
[41] for total motion capture. However, they do have their
own limitations. On one hand, although pose-regression
networks can produce plausible results even under occlu-
sions, they can not guarantee accurate 2D alignment with
the input image. On the other hand, heatmap-based net-
works provide accurate 2D detections for visible joints, but
they are still suffer from depth ambiguities and are suscep-
tible to local minima during optimization. In this paper,
we unify them together in a two-stage parametric fitting
scheme, which contains local initialization and total opti-
mization, to boost the total motion capture performance.
Local Initialization To accelerate convergence and prevent
optimization deviation, it is essential to initialize the motion
of each body part to a reasonable status. Specifically, for
hand pose initialization, we pick a decent initial value from
the semantic pose-regression gestures according to the hand
association score ζ (Eqn. 2) and ξ (Eqn. 3). Besides, for
body/head pose initialization, we solve the SMPL-X body
pose by minimizing the following energy function directly
to guarantee more accurate initialization:

Ebody = λb3dEb3d + λpriEpri + λβEβ (4)

Here, Eb3d is the distance from parametric model’s joints to
the corresponding reconstructed 3D body skeletons. Epri

and Eβ are used to regularize natural pose and shape opti-
mization as in SMPLify-X [41].
Total Optimization In this stage, we leverage the accurate
2D hands keypoints and faces landmarkers to further opti-
mize the initial SMPL-X model for accurate total capture:

Etotal = Edata + Ereg,

Edata = λb3dEb3d + λh2dEh2d + λf2dEf2d,

Ereg = λpriEpri + λβEβ + λθ,hEθ,h + λεEε,

(5)

where Eh2d and Ef2d are 2D data terms to minimize the
distances between the 2D projections of the SMPL-X joints



Figure 5. Illustration of two-stage parametric fitting. (a) Stage 1:
we solve the body posture as well as arm kinematics and assign
the gesture of pose regression with the highest association score ζ
and ξ. (b) Stage 2: we then perform total optimization to achieve
accurate total motion capture.

and the detected 2D keypoints in all the valid viewpoints.
Eθ,h and Eε are L-2 norm to keep the optimized gestures
and expressions within reasonable ranges. Note that we can
additionally leverage the consistency scores ζ and ξ (Eqn. 2
and 3) to balance the detection results in different views, so
Eh2d = Σc

ζc+ξc

2 · ech2d, where c is the view index.

6. Feedback Mechanism
Last but not least, for severe occlusions and close inter-

actions, we put forward a feedback mechanism to boost the
tracking performance of the association algorithm in return.
On one hand, detailed limb detector contributes to extrem-
ity reconstruction with higher precision, which are lever-
aged to refine the body skeleton results. On the other hand,
we re-render the human model to each view for the next
frame to extend the tracking edges ET of G4D with addi-
tional visibility information. As shown in Fig. 6, we obtain
the initial segmentation by rendering the optimized para-
metric models back to input images. Meanwhile, in order
to enhance the robustness with body movements, we imple-
ment distance transformation to smooth the boundary of the
rendered mask.

For a given 2D keypoint detection candidate c, we use
the same denotation zk(c) in [62] to refer the possibility
to connect that candidate to person k. Benefiting from our
feedback module, the tracking edges in 4D association [62]
(Sec. 3.2) are extended with visibility priors. We define the
enhanced tracking edges ẑk(c) as:

ẑk(c) =
τk(c)∑K
i=1 τ

i(c)
zk(c), (6)

where τ i(c) ∈ [0, 1] means the continuous occupancy of
person i. As shown in Fig. 6 (d), τ i(c) is negative interre-
lated to the distance to its binary mask, τk(c) = 1 refers
to the fully contained situation. As a result, our feed-back
mechanism enhances skeleton tracking performance and re-
duces jittering in projection coincidence cases.

Figure 6. Illustration of our feedback mechanism. (a) and (b) are
the aligned parametric models. (c) Segmented results by render-
ing. (d) is the softened mask generated by distance transformation
to enhance the robustness of association during fast motion.

7. Results

In Fig. 7, we demonstrate example results by our system.
With the sparse multi-view setup, our method produces ex-
pressive human parametric models under multi-person in-
teractive scenarios.

7.1. Implementation Details

Our light-weight total capture system are implemented
with 6 synchronized RGB cameras (resolution 2048×2048)
on a single PC (i5-6600K CPU, NVIDIA RTX 3090 GPU).
We use Openpose [9] as our body pose estimator, SRHand-
Net [53] as our hand instance detector and keypoint de-
tector. We leverage the hand pose-regression network of
Frankmocap [45] gesture regressor. FaceAlignment [7] are
used for face keypoints extraction. Besides, we accel-
erate all neural network inference by implementing half-
precision arithmetic on NVIDIA TensorRT platform. The
CNN performance is shown in Table. 1. Besides, our body
association backbone takes nearly 10ms to recover human
skeletons, the limb localization and association method is
fast enough to be neglected. Our parametric fitting work-
flow takes 150 ms for stage one and 350 ms for stage two
(20 Gauss-Newton iterations and parallel for each person).
On the whole, our system run-time depends on the cap-
tured individual number and view number. Empirically, our
pipeline runs about 1 fps for 2 person with 6 views, and the
processing speed slows down to 0.3 fps for 7 persons with
8 views. As for hyper-parameters, sphere radius R in hand
localization is set to 0.15m, and association NMS threshold
is 0.5. In two-stage parametric fitting, we set λb3d = 10,
λh2d = 0.0001, λf2d = 0.0003, λpri = λθ,h = 0.01, and
λβ = λε = 0.01.

Network Input Batchsize Speed(FPS)
Openpose [9] 368× 368 6 43.1
FaceAlignment [7] 256× 256 4 109.5
SRHandNet [53] 256× 256 8 50.0
HandHMR [45] 224× 224 8 202.1

Table 1. Inference speed of the CNN networks used in our system.



Figure 7. Results by our system. From the left to right are input reference images, parametric model alignment, facial and hand alignment
and 3D visualization from a novel view, respectively. (a) Results of the hand-object-interaction case from our captured data using 6 views,
(b) results of a multi-person-interaction scenario using 6 views, (c) results on CMU dataset [22] using 8 views.

7.2. Comparison

Since our method is the first to enable lightweight total
capture from sparse multi-view, we compared our method
with SOTA single view method FrankMocap [45] in Fig. 11
and ground truth from Total Capture [22] in Fig. 9. What’s
more, MPJPE (Mean Per Joint Position Error) are provided
for Total Capture dataset Tab. 2.

7.3. Evaluation: Hand Bootstrapping

We compare our hand bootstrapping method with SOTA
monocular total capture method Frankmocap [45]. To en-
sure fairness as much as possible, we reduce our system to
2 close front view camera. Fig. 11 (a) shows the recon-
struction failure of FrankMocap [45] caused by mixing up
left and right hands to the same region proposal. Thanks to
the proposed NMS method in hand association, our method
can robustly reconstruct more accurate hands in Fig. 11 (b).

7.4. Evaluation: Two-stage Parametric Fitting
We conduct ablation study of two-stage fitting metric on

CMU dataset [55] and demonstrate that our method makes
different modality detectors benefit from each other. On the
one hand, as shown in Fig. 8 (a)(d), we perform our two-
stage fitting algorithm with only pose regression results,
namely we leverage orthogonal projected joints from pose-
regression network to take over heatmap-based 2D corre-
spondences in stage two. Misalignment artifacts are shown
in detail as pose-regression detector could not guarantee
pixel-aligned accuracy. One the other hand, keypoints-
detection-only results are shown in Fig. 8 (b)(e). Without
pose regression network to initialize hand poses with rea-
sonable gestures, the optimization is easy to fall into a local
minimum.

7.5. Evaluation: Feedback Mechanism
We evaluate our feedback module in Shelf dataset [3].

As shown in Fig. 10(a), the left elbow the of salmon person
is distributed to the background green person without feed-



Figure 8. Qualitative evaluation of two-stage parametric fitting.
(a) and (d) are the results with parametric-regression-only met-
ric (blue). (b) and (e) are the results with keypoints-detection-only
metric (salmon). (c) and (f) are the results with our two-stage fit-
ting strategy combing both metrics (pink). Meanwhile, we visual-
ize pose-regression network outputs and heatmap-based network
outputs in right of (a) and (b), respectively. Red dots in right of (d)
(e) (f) refer to the ground-truth 3D hand annotations.

Figure 9. Comparison of our sparse-view method(8 view used) to
ground truth from Total Capture Dataset[22]. The mesh refers to
our reconstructed parametric model (SMPL-X), and the red key-
points are the ground truth from the Total Capture dataset.

Figure 10. Qualitative evaluation of feedback mechanism. (a)
shows the original association results of [62]. (b) are our recon-
structed model of last frame. (c) shows that our feedback mecha-
nism boosts body association performance with visibility prior.

Figure 11. Qualitative evaluation of hand bootstrapping & com-
parison against SOTA monocular method, FrankMocap [45]. (a)
Results of Frankmocap [45], only single ROI are extracted for each
view, and left hand (blue rectangle) and right hand (green rectan-
gle) have been distributed to the same ROI proposal. (b) Results
of our method, all hands are extracted and associated correctly.

Type Body Head LHand RHand
MPJPE(mm) 33.4 21.7 22.6 19.3

Table 2. Quantitative evaluation on Total Capture dataset. We cal-
culate the MPJPE of body&head joints on a video segment (750
frames) which involves both large variation movements and metic-
ulous hand gestures (noted that hand annotations are few for chal-
lenge gestures) with 5 cameras for a comprehensive evaluation.

back. We show enhanced association results in Fig. 10(c)
and prove that visibility informations provided by recon-
structed human models help to eliminate that ambiguity.

Shelf A1 A2 A3 Avg
w/o feedback 99.0 96.2 97.6 97.6
w/ feedback 99.5 97.0 97.8 98.1

Table 3. Ablation study of feedback mechanism on Shelf dataset.
Numbers are percentage of correct parts(PCP).

8. Discussion
Conclusion In this paper, we propose, as far as we know,
the first multi-person total motion capture framework with
only a sparse multi-view setup. Based on the proposed hand
and face bootstrapping, two-stage parametric fitting and
feedback mechanism, our method can enable lighweight,
fast, robust and accurate capture of the body pose, hand ges-
ture and facial expression of each character even under the
scenarios with severe occlusions and close interactions.
Limitation and Future Work We can mainly recover the
facial expression by the jaw joint, and cannot reconstruct
subtle facial expressions due to the low-resolution facial im-
age input, which we leave for future research.
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