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Video-Based Outdoor Human Reconstruction
Hao Zhu, Yebin Liu, Jingtao Fan, Qionghai Dai, Senior Member, IEEE, and Xun Cao, Member, IEEE

Abstract— A human body scanning system of great practical
convenience, which can be used in an outdoor environment, is
proposed. The system uses only a single conventional video cam-
era without the aid of special sensors or controlled illuminations.
We leverage the structure from motion calibration results directly
and improve the available video-based dense 3D reconstruction
by integrating the surface smoothness constraints. The point
cloud reinforcement is proposed to detect and adjust the conflict
point data for the slender and shaky body parts. Combined
with the silhouette adaptation, the proposed point cloud rein-
forcement achieves reasonable and plausible mesh reconstruction
on these challenging parts. We further introduce the close-shot
frames to refine the prereconstructed mesh model, leading to
a colored watertight model. The overall system is approximate
to automatic since only one or two times of painting brush
interaction are required for robust and high-quality multiview
image segmentation. The experiment results on various test
sequences demonstrate the effectiveness and the robustness of the
proposed method, even under very challenging scenarios when
shaking body, varying illumination, and textureless regions occur.

Index Terms— 3D reconstruction, close shot, surface reinforce,
video-based, watertight model.

I. INTRODUCTION

IN RECENT years, there are growing demands for the
3D model of human bodies in various fields, ranging from

movie/TV industry, electronic games, and virtual reality to
3D printing. Human body scanning has many applications in
computer vision and industry standardization. The traditional
3D scanning techniques, e.g., laser scanner, require sophisti-
cated equipments, which are expensive, sensitive to calibration
error, time-consuming, and hard to operate. The consumer
level 3D sensors, e.g., Kinect, are increasingly popular, since
they provide a more convenient approach for amateurs to
reconstruct the 3D models. However, the specific hardware
is still required, and the depth quality greatly degrades for
outdoor scenarios.

Stereo-based 3D reconstruction from a video or an image
sequence has been the subject of intense research for
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its flexibility. In general, the stereo-based methods fall into
two main categories, i.e., active and passive. The active
methods, such as laser scanner [1], structured illumination [2],
and even method that interacts with the target objects [3],
usually provide higher reconstruction accuracy, but may fail
in outdoor environments with strong sun light. Instead, the
passive methods recover the 3D model from several regular
photographs, which presents more practical benefit for the
outdoor 3D reconstruction. The structure from motion (SFM)
algorithm has been studied well for the past decades, and
can be applied to a variety of realistic scenes. Several image-
based reconstruction applications or software, including Visual
SFM [4] + PMVS [5]/CMP-MVS [6], PhotoScan,1 and
123D Catch,2 have achieved 3D model generation from pho-
tos, and do well in static object reconstruction. However,
as the illumination of the outdoor scenes is uncertain and
changeable, 3D reconstruction in outdoor environment tends
to be affected by the illumination change and limited image
quality. Furthermore, the human body contains many delicate,
slender, and shaky parts, like legs, feet, arms, and hands,
which make the human reconstruction outside the room even
more fragile. Therefore, recovering the 3D model of a live
human in outdoor environment with a portable camera still
remains a very challenging problem, especially when the
target human cannot maintain absolutely static during the
video capture.

In this paper, a stereo-based method without requiring any
special devices or capture skills is proposed, as shown in
Fig. 1. The method reconstructs the 3D model of humans from
a short piece of video or an image sequence taken around
the target person. Inspired by the monocular dense tracking
method [7], we extract matching information from the input
video/images to overcome the instability of the outdoor scenes.
A robust 3D model estimation is proposed to reconstruct the
human model from the video taken with ubiquitous outside
environment. The proposed method consists of an off-line
processing that only uses a short piece of video as input.
This kind of video clips can be obtained with much flexibility
by using a digital video (DV) camera or even a small cell
phone. The video clip can be captured by a walking person or
a moving vehicle around the target object, which only takes
dozens of seconds. A simple interaction step is introduced to
segment the human body accurately. The overall processing
merely needs one or two interactions, so the system works
in an approximately automatic manner. The reconstructed
3D models can also be printed using a 3D printer for potential
practical applications. In sum, we make the following technical
contributions.

1http://www.agisoft.com
2http://www.123dapp.com/catch
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Fig. 1. Whole pipeline of our system. The overall system is approximate to automatic, as only one or two times of painting brush interaction are required
to generate a high-quality human model.

1) We directly leverage the SFM camera calibration results
and improve the available video-based dense 3D point
cloud reconstruction by integrating the surface smooth-
ness constraints.

2) To improve the accuracy on the shaky body parts, we
propose the point cloud reinforcement to detect and
adjust the conflict point data for the shaky body parts.
Combined with the silhouette adaptation, the proposed
point cloud reinforcement achieves reasonable and plau-
sible mesh reconstruction on these challenge parts.

3) To further improve the surface details, we propose the
close-shot refinement including the automatic grouping
and mesh deformation, driven by reliable pixel as well
as a detail enhancement optimization based on the close-
shot video.

II. RELATED WORK

The proposed scheme is dedicated to outdoor human
3D reconstruction, which is closely related to various literature
aiming at multiview stereo (MVS) and 3D modeling. We will
review the previous work in these categories.

A. Multiview Stereo

We could refer to the benchmarks in [8] and [9] for
a comprehensive survey. Furukawa and Ponce [5] put for-
ward the photo consistence-based optimization method, and
considered the 3D points as a patch. Liu et al. [10] inte-
grated silhouette information and epipolar constraint into the
variational framework for continuous depth map estimation.
Li et al. [11] introduced a bundle optimization method and
used a DAISY feature to compute depth map. The algorithm
performs well on the outdoor data sets when the camera
parameters are given. The traditional MVS algorithms advance
in high reconstruction precision, but most of them are not
suitable for complex illumination and outdoor scene.

B. Structure From Motion

Pollefeys et al. [12] put the work on reconstruction with
a handheld camera, then in [13], a real-time video-based
3D acquisition system was presented. The system collects
video streams, as well as GPS and inertia measurements to
reconstruct the model of urban scenes. Newcombe et al. [7]
proposed the method for real-time interactive 3D reconstruc-
tion, which relies on dense, pixelwise methods. Their system
applies the global optimization to reconstruct a fine surface
of the scene. Stühmer et al. [14] presented a similar work
estimating the depth maps from multiple views and converting
them to triangle meshes based on the respective neighborhood
connectivity. Both research are facing a plane scene and cannot
generate a close model. Kolev et al. [15] proposed an efficient
and accurate scheme for the integration of multiple stereo-
based depth measurements, allowing to obtain the 3D mod-
els of pleasing quality interactively and entirely on device.
Although their work realized the real-time reconstruction, the
results are relatively discrete point clouds, while this paper
aimed at reconstructing an integrated, closed human mesh
model.

C. Prior

As prior knowledge is significant in image-based 3D
reconstruction field, we discuss the prior knowledge
separately. Furukawa and Ponce [16] presented to construct a
coarse surface approximation in the form of a visual hull. Both
geometric constraints and photo consistency constraints are
enforced to acquire 3D shapes. Gall et al. [17] presented to use
silhouette as prior. After the skeleton is built, the approximate
surface skinning, true small scale deformations, or nonrigid
garment motion are captured by fitting the surface to the
silhouettes. Cremers and Kolev [18] tackled the reconstruction
problem as the one of minimizing a convex function where the
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exact silhouette consistency is imposed as a convex constraint,
which restricts the domain of the admissible functions.
Bao et al. [19] incorporated semantic information in the form
of learned category-level shape priors and object detection.

D. Passive Human Modeling

The image-based body modeling methods have drawn
much attention in the past decades. Template aided methods
including [17], [20], and [21] employed multiview video to
guide the prescanned model or articulated mesh deforming.
These methods are suitable to motion tracking and ren-
dering, but the accuracy of recovered shape is undefined.
Wu et al. [22], [23] took advantage of photometric stereo
to recover detailed geometry. However, the methods have
the strong assumption on a reflectance model, relying on
controlled illumination or uniform surface appearance, which
could only be achieved in the studio. Low-cost body scanning
systems, including [24]–[26], were designed using multiple
fixed camera system to reconstruct a human body. These sys-
tems achieve high accuracy and show the feasibility of close
range photogrammetry in medical application. More about the
body scanners for anthropometric data are reviewed in [27].

E. Range Sensor

As range sensor provides credible depth information, the
main study focuses on dense points alignment, fusion, and
deformation. Newcombe et al. [28] presented a Kinect fusion
system for accurate real-time mapping of the complex and
arbitrary indoor scenes in variable lighting conditions. Ama-
teurs are able to generate the 3D models of target objects
with stunning details and accuracy. Tong et al. [29] presented
a scanning system for capturing the 3D full human body
models using multiple Kinects. Three parts of the body are
scanned separately and registered under nonrigid deformation.
Chang and Zwicker [30] introduced the pairwise nonrigid reg-
istration techniques to handle different types of deformations
such as quasi-articulated motions, and in [31], they used the
global alignment method to cope with larger deformations.
Li et al. [32] developed an automatic pipeline that allows
nonexpertise users to capture complete and fully textured 3D
models of themselves in minutes, using only a single Kinect
sensor. Barmpoutis [33] proposed to reconstruct the 3D model
of the human body from a sequence of Red Green Blue-Depth
frames. The framework runs in real time and allows the human
subject to move arbitrarily in front of the camera. Comparing
with an active scanning method, our method requires only one
video recorder, which is more available than the depth sensors.
The low-cost range sensors like Kinect and Xtion are in
relatively low space resolution than an image sensor, and they
tend to fail in outdoor scenes due to the sunlight interference.

Our method differs from all kinds of aforementioned
literatures, relaxes all the assumptions or control on
illumination conditions, and neither requires any special
sensors or add-on equipments. Besides the flexibility, by
taking advantage of both multiview segmentation and the
reinforcement of the object surfaces, the proposed method is
able to generate a watertight 3D model robustly in spite of
the object shaking or illumination varying.

III. POINT CLOUD RECONSTRUCTION

In this section, we will illustrate each step in the pipeline
of the depth map estimation. We first capture a video of an
outdoor human using a handheld camera (DV or cell phone).
The capture process takes ∼20–30 s to move around the object
human. If higher 3D reconstruction accuracy is expected,
another dozens of seconds are consumed to shoot at the details
in a closer distance. We then use an SFM method to calibrate
the images and segment the several keyframes using the
N-view match points. The depth images of the keyframes are
estimated using a modified cost volume [7], and several priors
are employed to refine them.

A. Calibration

In the first stage of the modeling pipeline, the video
is decoded into image sequence, and all the frames in
the sequence are calibrated using SFM. As introduced
in Section II, an SFM method has been studied in the past
decades, and standard pipeline has been presented, such as
Visual SFM tools [4], [34] and OpenMVG.3 Our system
adopts OpenMVG to perform the SFM algorithm. Meanwhile,
we have verified the feasibility of visual SFM result to support
our system. The calibration phase accomplishes the following
pipelines: first, the SIFT [35] features of the image sequence
are extracted and matched; then, an incremental SFM [36] is
adopted to generate the calibration parameters. The calibrating
result is refined using bundle adjustment, and the points that
could be observed in more than three views are stored as the
N-view matches. Given the camera parameters, a sparse point
cloud of the scene is recovered from the N-view matches. The
density of the sparse cloud depends on the quantity of the
SIFT features in the image. More specifically, there are more
dense points in a textured region, and the scattered points in
a repeated or ambiguous texture region. After that, we do not
intend to reconstruct the model from the sparse cloud, but use
the points as a constraint in the depth image estimation.

B. Segmentation

After calibration, several keyframes are extracted from
the image sequence. The keyframes are chosen at regular
intervals to ensure appropriate baseline length. The interval
frame number is 15 in all our experiments, so that we could
obtain 20–30 keyframes in an object-centered circle, and the
segmentation is applied merely on these keyframes.

The keyframes are segmented using the multiview seg-
mentation approach that is similar to [37]. As demonstrated
in Fig. 2, users are allowed to interact with the image seg-
mentation program, indicating the foreground and background
with the paint brush. The selecting part of image transports
the label to the point in N-view point cloud. The foreground
probability is propagated from one point to another according
to the connectivity and the nearest neighbor method. Then, the
N-view point cloud is projected to each keyframe; meanwhile,
the foreground probability is transferred from the point to the
pixels of other keyframe images. Graph cut method [38] is

3http://openmvg.readthedocs.org/en/latest/openMVG/openMVG
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Fig. 2. Segmentation process includes an interaction with users. In (a), the
user picks out the foreground with red paintbrush and background with blue
paintbrush. In order to make a preferable initial segmentation, it is better
to select the object human foot as foreground and the floor near the feet
as background. The probability is propagated to another view via m-view
point cloud. A rough segmentation result in every keyframe is returned to
the user, and the optional revision is then supplemented by the user. The
keyframes are shown in sequence, if the segmentation of current image is
ideal, this one is passed, and if the segmentation has a problem, like (b)–(d),
the user should make a revision as (3)–(6). Here, the green area is the
segmentation result in previous iteration. In general, one or two revisions on
head or limbs are enough to make a fine segmentation. In (e), the N-view point
cloud is generated by Visual SFM. The point cloud is too sparse and noisy,
but is enough to guide the multiview segmentation. (f) Labeled point cloud.
Red: foreground points. Blue: background points.

adopted to segment the image according to the probability
map. The users are allowed to make a revision on images
during the iteration of the segmentation process. In general,
one or two revisions, which focus on object’s head and arm
are enough to make a fine segmentation result.

In our experiments, the segment results are generally fine,
while few tiny-range misjudgments occur on the edge of the
mask. The impact of misjudgments on subsequent processing
is weak, because the segmentation results are used mainly in
two phases.

1) In depth estimation phase, we assign the depth comput-
ing region according to the segmentation. The exceeding
misjudgment pixels will lead to monstrous depth, which
can be easily filtered in the fusion phase. The filtered
depth vacancy is replenished by the depth image of the
other views.

2) In the silhouette adaption phase, as the displacement
of surface is controlled by the multiview silhouette
in iteration, the tiny-range errors of segmentation are
dispersed in the experiment.

C. Dense Depth Estimation

Our stereo matching process is a modification of the cost
volume method in [7]. We gather the contextual frames of one

Fig. 3. Cost volume model of the depth map estimation. From the top–down
of the left part: one keyframe image (red frames), segment result (mask), and
initial depth map. The points on the red line crossing the keyframe’s camera
center denote the depth candidates. Blue rays: projection relationship between
the candidate points and the pixels in the reference frame (blue frames).

keyframe to compose a cluster M, which shares a plenty of
overlapping regions. A projective photometric cost volume is
defined for each keyframe in Fig. 3, and we allocate a list of
depth candidates to each pixel in the mask, and each candidate
contains a matching cost of its depth. Then, the matching costs
are computed by projecting the point of the current pixel and
depth to the other images in the bundle, and summing the
L1 norm of the photometric errors. Mathematically, the match
cost is formulated as

C(u, v, d)= 1

m

∑

i∈M
‖ Ikey(u, v) − Ii (Pi (inv Pkey(u, v, d)))‖1

(1)

where inv Pi (u, v, d) reconstructs the point in the world axis
from the pixel location(x, y) and depth d, and Pi (x, y, z)
projects the point to the image coordinate. Both the functions
adopt the calibration parameters of frame i . m is the number of
frames in the cluster M, and key is the index of the keyframe.
Ii (u, v) is the sum of L1 norm of R, G, and B intensity
difference of the pixel (u, v). After every depth candidate’s
cost of one pixel are calculated, a winner-take-all strategy is
adopted to select the depth with the lowest cost. The difference
between our approach and the cost volume in [7] is that we
use the N-view match point cloud and segmentation as prior to
set float search origins for different pixels in one image, and
the depth searching range is determined by the scale of the
m-view point cloud and the image size, which trades off the
efficiency and precision. In our experiment, the depth interval
is the N-view match point cloud height divided by the pixel
number of mask image in the vertical direction.

D. Depth Refinement

The depth map of the previous phase is rough and scattered
in the textureless regions, and thus, we employ several priors
to constrain the cost model.

1) Shape Prior: As the shape information is obtained
(N-view match point cloud and keyframe segment), we apply



764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 4, APRIL 2017

a flexible range of cost volume for each pixel. To be specific,
the first step is to estimate the initial depth using all the
keyframes’ masks. A ray crossing the camera center and the
pixel in the world coordinate is drawn. The points on the ray
are projected to the other keyframes from the origin point
(camera center). If the point is the first, which falls into all
other keyframes’ masks, we set its depth as initial depth. Next,
the N-view point clouds are applied to replace the initial depth.
As the N-view points are unevenly distributed and contain a
mass of outliers, we elect the average depth of the dense part
to alter the initial depth in the first step.

2) Smoothness: Smoothness is the most common prior
used in the image-based 3D reconstruction. As for human
body, we intend to improve the surface consistency with the
guidance of photometric consistency. Based on the disparity
map refinement in [39], the depth map refinement iteration is
applied to smooth the depth map and improve the subscale
accuracy. The depth value of the pixel d is updated in every
iteration

d ′ = (ωpdp + ωsds)/(ωp + ωs) (2)

where ωp represents the match consistency

ωp =

⎧
⎪⎨

⎪⎩

c0 − c−1 (c−1 < c0, c+1)

0.5(c−1 + c+1 − 2c0) (c0 < c−1, c+1)

c0 − c+1 (c0 < c−1, c+1)

(3)

where c0 is the match cost of the selected depth, c−1 and c+1
are the match cost of the depth next to the selected depth,
forward and backward separately. ds is a smooth term and
dp is a linear fitting value of the matching cost, with

ds = ωx (dx−1,y + dx+1,y) + ωy(dx,y−1 + dx,y+1)

2(ωx + ωy)
(4)

dp = (d1 − d0)‖c1 − c0‖1 + (d−1 − d0)‖c−1 − c0‖1

‖c1 − c0|0 + ‖c−1 − c0‖1
+ d0.

(5)

3) Connectivity: Naturally, each part of the human body
is interlinked, and it is impossible to find more than one
isolated closed mesh in a single human model. However, a
few depth map-based 3D reconstruction algorithms perform
badly in thin area of human body like arms and legs because
of the difficulty to identify the outliers at the slender part.
On the other hand, a few outliers may make the constructed
mesh (e.g., through Poisson reconstruction [40]) break down.
Another labile factor is that the human object could hardly
maintain a pose during the video recording. A little waggle
would disturb the depth estimation and lead to the break
in the thin part. We will demonstrate how we ensure the
connectivity of human model and solve the problem of body
shaking in Sections IV-A and IV-B.

IV. SURFACE REINFORCE AND REFINEMENT

In this section, we explain how to reinforce the model to
ensure the integrity and how to tackle the shaking problem.
First, the depth maps are fused, and the outliers are removed
by the approach in [41]. Then, the point clouds reinforce is
applied to adjust the point in the conflict regions and avoid

the crack in slender parts. A mesh model is generated using
Poisson Reconstruction [40], and we adopt silhouette adaption
to refine the mesh model. Finally, we are able to improve
the model details with the close-shot clips of the captured
video, and render the entire model with Poisson blending
algorithm [42].

A. Point Cloud Reinforcement

After we obtained several keyframe depth maps in
Section IV, the point clouds are generated by inverse-
projecting the point of each pixel into the world coordinate.
The points that keep away from the points of contextual
keyframe are judged to be outliers and are removed. According
to the experiment, most of the outliers near the flat regions are
removed, but in curvature regions like arm, only the outliers
outside the cylindroid are detected, and the bad matched points
inside the cylindroid are remained, because they could find
the supporting points inside the dense curvature structure.
Moreover, the bare arms and legs are slender parts with few
textures, where the bad matched points are inclined to be
gathered. Fig. 4(b) and (c) demonstrates the fact that the
shaking region produces the crack of legs as well.

We propose to adjust the point with the prior that the
structure of a human body is connected and reinforces a
cylinder-like surface. The main idea is to ‘push’ points inside
the cylinder-like structure out in iteration. The points of the
keyframe are corresponding to each pixel of the segmented
masks, so the point clouds contain the reliable silhouette infor-
mation to the corresponding keyframe. Here is the detailed
procedure.

First, we pick out the curved regions with conflicts. The
principal component analysis algorithm is used to compute
the point’s normals in a certain point clouds. We call the point
clouds generated from a certain frame as target clouds and the
all others’ clouds as reference clouds. A K-D tree is built to
fast search the points of reference clouds near one point of
the target clouds. Focusing on a certain point of the target
clouds, if the intersection angle of its normal and a neighbor
point’s normal is greater than 90°, i.e., the normalized cross
correlation of the two normals is less than zero, this neighbor
point conflicts with the specified point, and the specified point
is judged to be a conflict point when the conflict ratio in the
neighborhood surpasses a threshold κ . In all our experiments,
κ = 0.3, and Fig. 4(a) (left) shows the checked conflict points.

After picking out the conflict points, we apply the iteration
only on the conflict region. The i th vector-type point in
keyframe n is ϒn(i), and the normal of the point is ηn(i).
The iteration is given by

ϒ ′
n(i) =

∑
j∈N(i) ϒ ′

n( j) + α
∑

h∈N(i) ϒm(h)λ(i, h)μ(i, h)

N j + Nh

·ηn(i) (6)

λ(i, h) =
{

1 if (ϒm(h) − ϒn(i)) · ηn(i) > 0

0 else
(7)

μ(i, h) =
{

1 if ηn(i) · ηn(h) > 0

0 else
(8)
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Fig. 4. Point clouds reinforce iteration. (a) Conflict points (red) and normal points (green). (b) and (c) Mesh model into two keyframes to show the leg’s
movement. The model is projected inside the mask in red regions, and out of the mask in dark red regions. The blue region means there are no projected
faces. (d) Two detailed images of the point clouds are extracted to demonstrate the result of the point cloud reinforce iteration. Green part: point clouds with
normal vectors. Blue part: result mesh from Poisson reconstruction. For the reason that body shakes and bad matches accumulate, the slender part becomes
deformed and even broken. The point’s movement will converge when it meets the edge from its vertical plane and form the accordant surface.

Fig. 5. Convergence of the point cloud reinforce iterations. The vertical
coordinate denotes average moving distance of the points. Note that the unit
of distance does not equal real-world unit.

where N(i) restricts the hunting zone, the searching radius
refers to the size of the model, and ‘·’ means the inner product
of vectors. α is a tradeoff factor, and in all experiments
α = 0.1. The point’s normal remains invariant during the
iteration. The first term is a smooth term, which ensures that
the points from one keyframe are continuous, and the other
term alters the points’ position. λ(i, h) forces the points to
expand, and μ(i, h) eliminates the effect of points facing
inconformity direction. Because each point is corresponding
with a pixel inside the segment masks, the essence is to push
the points out of the other frame silhouettes along the normal
direction. The silhouette information in each point is chang-
ing gently during the iteration to adapt to the other points.
Fig. 5 demonstrates the convergence of the iteration.

B. Silhouette Adaption

Since the points reinforcement mainly guarantees the
connectivity of the human model, the mesh model is generated
from the point clouds using Poisson surface reconstruc-
tion [40]. The points reinforcement protects the surface in a
low limit by adjusting the points, and more shapes are restored
using the silhouette. Following the silhouette adaption method

in [17], we constrain the projection of the vertices to lie on the
2D positions on the image silhouette boundary. The refined
surface is reconstructed by solving the least squares system

arg min
v

{‖LV − δ‖2
2 + α‖CsilV − qsil‖2

2

}
(9)

where L is the cotangent Laplacian matrix and δ is
the differential coordinates of our current mesh with
vertices V [43]. α is a weighting factor to the silhouette
constraints. The experiment part demonstrates that the method
works well in the shaking regions.

C. Close-Shot Refinement

As mentioned in Section IV-A, generally it takes 20–30 s
to accomplish the circle around the object human, and this
short film is enough to reconstruct an integrated closed model
using the above procedure. Beyond that, we could continue
to record more close-shot video to improve the details. The
close-shot clip means to capture additional video that is closer
to the object.

First, the close-shot clip is decoded into image sequence,
and is calibrated with the previous images. As the SFM process
is run in sequence, additional images are easy to be calibrated
with the existing image sequence. To make the SFM robust,
the camera should approach the object slowly and maintain a
tangential direction moving during the close-shot capture, for
the reason that most SFM methods are unstable to forward
motion.

Second, we adopt a depth estimation, which is similar
to Section III-C. The difference is that both the processing
region and the depth searching range are constrained. As the
details of the object are magnified in the close-shot image,
the texture on a small scale is weakening. Therefore, it is
tough to accomplish a fine dense depth estimation, since the
textureless area increase and depth estimation will fail in a
majority of region. Here, we merely compute the depth in
pixels that owns a matched SIFT feature. The SIFT features
of each image are pre-extracted in the SFM process. If an
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Fig. 6. Close-shot result. In both the refined models, the drapes on the coat are highlighted.

SIFT feature could be matched in more than three images, it
is proved to be a reliable feature. The reliable feature positions
are recorded after the calibration process, and we use pixels
with reliable feature and their 3×3 window neighbor pixels
to estimate depth. Furthermore, the depth searching range is
constrained in the range that is close to the original mesh
model.

In the final step, the vertexes of a pregenerating polygon
model are driven by the depth map directly. The pregenerating
mesh model is subdivided by simply quartering all of its
triangle face. Then, we inverse-project the depth map to the
world axis, and generate the points of each pixel. For each
pixel, the vertex, which is in the closest distance to the pixel’s
inv-projecting ray, is judged to be the corresponding vertex.
The displacement is transferred from the reliable pixel to the
corresponding vertex, and the initial displacement of vertex X ,
	pini(X) is defined as

	pini(X) = q(X) − po(X) (10)

where po(X) denotes the original position vector and q(X)
denotes the corresponding inv-projecting point. Then, the
displacement spreads along the topological relation of face.
The vertex’s displacement 	p(X) is formulated as

	p(X) =
∑

i<t

(1 + cos(iπ/t))/2 · 	pini(Xi ) (11)

where Xi denotes the vertex that is 1-ring neighbor of X , and
the final position p(X) is

p(X) = po(X) + 	p(X). (12)

In our experiments, t = 4. Finally, Laplace smoothing
method is employed in the deformed area to ensure that the
deformed region could join the undeformed region smoothly.
Fig. 6 shows the original model and the close-shot refined
result. The final model is rendered with multiview images by
the Poisson blending algorithm [42].

V. EXPERIMENTS

A. Comparison of Results

We compare our approach with the preexisting methods.
CMP-MVS [6], 123D Catch,4 and PhotoScan5 are image-
based 3D modeling softwares, which have been proved to
be excellent on the static objects. We capture the video and
decode it into image sequence, and then, we use the same
image sequence to reconstruct a human body in the afore-
mentioned softwares and our system separately. The video
is captured by Cannon XF305 recorder in 1280 × 720,
25 frames/s, and ∼20 s. CMP-MVS, PhotoScan, and our
method take 200 frames as input, while 123D Catch takes
70 interval sampling frames as input due to the software input
limitation. The image quality is limited due to the unstable
illumination and handheld shoot while walking.

Unlike still things, human body is instable and exists
tiny shake, which leads to failure in the slender parts like
arms, legs, and textureless parts like hair. During the capture
of the top sequences in Fig. 7, the object exists obvious
shake, and more details could be seen in the supplement
videos. As demonstrated in Fig. 7, the red boxes highlight the
disconnect or abnormal parts in the CMP-MVS, 123D Catch,
and PhotoScan models, while our approach produces more
preferable results, protects the slender parts, and retains the
details.

B. Quantitative Evaluation

We make the quantitative evaluation of the proposed method
and other methods in Fig. 8. The experimental subject is
a 1.85 m high static manikin dressed in common clothes
[see Fig. 8(a)]. We use a Kinect to scan the full body
and reconstruct the mesh model using algorithm [44], which
is the modified approach based on Kinect Fusion [28].

4http://www.123dapp.com/catch
5http://www.agisoft.com
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Fig. 7. Comparing with CMP-MVS and PhotoScan, our method protects the shaking and slender parts as shown in rectangle frames.

Fig. 8. Quantitative evaluation of different methods. We scanned a manikin
(a) with a Kinect, and then evaluated the accuracy of four different methods
(b) PhotoScan, (c) 123D Catch, (d) our methods without surface reinforce and
refinement, and (e) full pipeline of the proposed method. The average error
distances are listed below the model.

Then, the results of PhotoScan, 123D Catch, and our method
are compared with the scanned model. When scanning the
manikin in the outdoor scenes, we find that the Kinect could
hardly work in sunny day due to the interference of the
ambient light, and more than 60% pixels of the range image
return invalid values. Therefore, we scanned the manikin
indoors in advance.

The video is captured by a Sony HXR-NX3 recorder in
1280 × 720, 25 frames/s, and then 255 frames are extracted
as the input. Note that 123D Catch takes 70 interval sampling
frames as input due to the software input limitation. To make
the virtual scale equal to real world scale, we select more than
20 point pairs from the anchor points, and measure the distance
of these pairs. The scale factor is the average value of all these
pairs’ scales, which are defined as the real distance divided by
the virtue distance. After zooming the result model to the real
world scale, iterative closest point algorithm [45] is used to

TABLE I

COMPUTATIONAL COST OF THE EXPERIMENT ON DATA SET (b)

register the result model to the scanned model. We compute
the closest distance between one vertex on the scanned model
and the mesh model to be evaluated, and assign the distance
value to this vertex, as shown in Fig. 8(b)–(e).

The static object reconstruction is steadier than real human
body, lacking disconnect problem. Nonetheless, the image
demonstrates that the results of PhotoScan [Fig. 8(b)],
123D Catch [Fig. 8(c)] and our pipeline without part III
[Fig. 8(d)] degrade in legs and arms; meanwhile, our method
[Fig. 8(e)] protects slender parts of the body and generates a
more accurate model.

C. Experiments in Various Condition

We verify the proposed method using various challenging
real-captured sequences as well. As shown in Fig. 9, other
reconstructed 3D model and capture scenes are presented.
The capturing equipment includes professional video recorder,
commodity DV, and entry-level digital single lens reflex
camera. During the procedure of the video shoot, the object
distance is ∼3 m. The focal length, aperture size, and white
balance are fixed. Fig. 10 shows the 3D printing results using
the gypsum powder color 3D printing technique.

Different conditions and challenges are presented in the
scenes, respectively: the illuminance in Fig. 9(b) and (c) is
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Fig. 9. (a)–(d) Result models captured by our system. For each group, from left to right, we show the video parameters, capture scene, mesh model, and
rendering model.

Fig. 10. Our result model is watertight, and can be 3D printed directly.

relatively uniform, since the weather is cloudy, while the
scenes in Fig. 9(a) and (d) are exposed under strong sunlight;
our method accomplishes the reconstruction in both sunlight
and cloudy weather. In Fig. 9(a), there are few people walking

in the distance. During the shooting process, the object exists
different levels of shake, and more detailed exhibition could
be seen in our additional video.

In general, it takes 20 s to orbit the objective figure, and the
keyframes are selected out every 15 image, and each cluster
has 29 reference frames. We measured the performance of our
algorithms on a workstation (CPU i7-2600 3.4 Ghz, 8 Cores,
32-GB RAM). Table I shows the runtime of data set (b). The
close-shot refinement is not included in the automatic pipeline,
since the close-shot length is uncertain.

VI. CONCLUSION

We have presented a practical system of scanning a human
body using only a conventional video camera. The algorithm
performs robustly in outdoor scenes; point clouds reinforce-
ment and silhouette adaption repair the broken regions in legs
and arms. Our result models are watertight, which can be
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directly used in 3D printing. The overall system is approxi-
mately automatic, as only little interaction with user is needed
in a segmentation phase.

Our approach still has some limitations. The method cannot
handle the case of large-scale movement, and also depends on
the success of both the SFM and multiview segmentation algo-
rithms used. In our experiments, most of the video clips did
well in SFM, but a few may generate uncorrected calibration
due to the motion blur and severe distortion when using the
wide field camera.
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