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Robust Non-rigid Motion Tracking and Surface
Reconstruction Using L0 Regularization

Kaiwen Guo, Feng Xu, Yangang Wang, Yebin Liu, Member, IEEE and Qionghai Dai, Senior Member, IEEE

Abstract—We present a new motion tracking technique to robustly reconstruct non-rigid geometries and motions from a single view
depth input recorded by a consumer depth sensor. The idea is based on the observation that most non-rigid motions (especially
human-related motions) are intrinsically involved in articulate motion subspace. To take this advantage, we propose a novel L0 based
motion regularizer with an iterative solver that implicitly constrains local deformations with articulate structures, leading to reduced
solution space and physical plausible deformations. The L0 strategy is integrated into the available non-rigid motion tracking pipeline,
and gradually extracts articulate joints information online with the tracking, which corrects the tracking errors in the results. The
information of the articulate joints is used in the following tracking procedure to further improve the tracking accuracy and prevent
tracking failures. Extensive experiments over complex human body motions with occlusions, facial and hand motions demonstrate that
our approach substantially improves the robustness and accuracy in motion tracking.

F

1 INTRODUCTION

A CQUIRING 3D models of deforming objects in real-life is
attractive but remains challenging in computer vision and

graphics. One kind of approach focuses on articulate motions like
human body and hand motions, which are intrinsically driven
by skeleton structures. These motions can be reconstructed by
modeling the motions on skeletons [1], [2], [3], [4], [5]. However,
there are large numbers of deforming objects which cannot be
completely modeled by skeletons, e.g. the activity of people grasp-
ing a non-rigid deforming pillow (Fig. 1). Besides, the accuracy
of tracking is sensitive to the skeleton embedding and the surface
skinning [6] strategies, which usually require manual operations
to achieve high quality motion tracking [1], [7].

Non-rigid deformation [8], [9], [10] provides an appealing
solution for dynamic object modeling since it does not require
the build-in skeletons. The basic idea is to deform the vertices of a
template model to fit the observation at each time step and follow
some smooth motion priors. However, since the space of non-rigid
deformation is much larger than that of the skeleton motion, and
non-rigid deformation usually employs local optimizations, avail-
able non-rigid motion tracking methods are easy to fall into local
minimum. Furthermore, they suffer from error accumulation, and
would fail when tracking long motion sequences from noisy and
incomplete data obtained by a single consumer depth sensor [11].
Robust tracking of complex human body and hand motions using
non-rigid motion tracking techniques (without embedded skeleton)
is still an open problem.

In this paper, we observe that most of the non-rigid motions
implicitly contain articulate motions, which have strong deforma-
tion changes on some sparse regions, called joint regions, while
keep consistent on other regions. This means when calculating
spatial deformation gradient on object surface, only some joint
regions have non-zero gradient values while other surface regions
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Fig. 1. Three reconstruction results of our method. For each result, we
show the input depth and the reconstructed geometry model.

keep zero or close to zero.
Based on this key observation, we contribute a novel sparse

non-rigid deformation framework to reconstruct non-rigid geome-
tries and motions from a single view depth input via L0-based
motion constraint. In contrast to the widely used L2 regularizer
which sets a smooth constraint for the motion differences between
neighboring vertices, the L0 regularizer allows local non-smooth
deformation on several significant deformation parts, i.e. joints of
articulate motions, while constraints consistent motions on other
regions. This method greatly reduces the solution space and yields
a more physically plausible and therefore a more robust and high
quality deformation.

For temporal successive frames, however, as all motions are
small, the proposed L0 regularizer is incapable to distinguish the
articulate motions from non-rigid surface motions. On the other
hand, with more frames accumulated, articulate motions become
stronger while pure non-rigid motions always stay small. To this
end, we first estimate per-frame motions by L2 optimization
and accumulate the motions of multiple frames until an anchor
frame is reached, where the accumulated articulate motion is large
enough to be detected. Then we apply L0 optimization on the
anchor frame to refine the tracking results, followed by an L2

optimization to reconstruct the rest non-rigid motions as a second
step.

Comparing with the preliminary version [12], besides more
thorough comparisons with existing state-of-the-art methods and
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Fig. 2. The pipeline of the proposed method. Please refer to Sec. 3 for detailed description. The red circles indicate the newly detected joints
for each anchor frame.

more complete evaluations of the key components of the tech-
nique, this paper also proposes some key technical improvements,
leading to a new tracking pipeline which is much more efficient
and handles some challenging motions which the method of the
original work [12] fails to produce.

To be specific, [12] reconstructs articulate motions indepen-
dently for each pair of consecutive anchor frames, which means
the locations of the articulate motions are repeatedly detected.
However, for general objects like human, articulate motions al-
ways occur on joint regions which do not change over time.
Based on this observation, we improve the articulate motion
reconstruction by a new progressive strategy, which updates and
refines the locations of articulate motions online as the motion
proceeds. One benefit is that, for a newly detected anchor frame,
we only need to check whether new joint regions can be detected,
while the joint regions already detected in previous frames do not
need to be considered any more, thus reducing a lot of computation
time in L0 optimization. More importantly, this strategy involves
the information of previous anchor frames into the current one,
thus the articulate motion reconstruction can be more robustly and
accurately achieved. For example, in the case of occlusion, it is
impossible to detect the occluded joints; but if it has already been
detected in the previous anchor frames, the joint information can
be used here to get a better result.

To fully leverage the online-updated locations of articulate
joints, we integrate this information into the L2 optimization.
By simply setting spatial-variant weights on the smooth motion
constraints, according to the locations of articulate joints, the L2

optimization can generate large motions on joint regions while
keep other regions with consistent motions, achieving desired mo-
tion reconstruction. In this manner, after all joint regions detected
by previous anchor frames, the improved L2 optimization alone
is able to reconstruct articulate motions with the information of
the joint distribution. So the L0 optimization and the bidirectional
tracking in [12] do not need to be performed again, which further
makes our system much faster. In addition, the accuracy of the
reconstructed motion is also improved over [12]. [12] solves for
an L0 optimization and an L2 optimization in reconstructing the
motions in anchor frames. This two-step algorithm may generate
more errors compared with our unified algorithm that jointly
estimates articulate motions and non-rigid motions. The difference
is more apparent when handling repeating articulate motions.
In this case, the accumulated errors of the two-step algorithm
will become noticeable and generate artifacts while our unified

algorithm solves this problem very well. Experiments will be
shown in the result section.

In this paper, we demonstrate that, with monocular depth input
captured by a consumer depth sensor, the proposed approach
achieves accurate and robust reconstruction of complex non-
rigid motions such as human body motions, facial expressions,
hand motions and body motions interacting with objects. Our
approach shows more robustness on tracking long sequences (up
to 800 frames) with complex motions and significant occlusions,
compared with the state-of-the-art non-rigid deformation methods.
Furthermore, the technique does not rely on skeleton embedding
and skinning weight calculation, thus dramatically reducing the
workload of motion reconstruction and enabling much wide cate-
gories of objects to be tracked. The data and source code of our
work are made public on the project website1.

2 RELATED WORK

Techniques of non-rigid motion reconstruction have been widely
used in recent years. For example, in movie and game industry,
motion marker systems ( e.g., Vicon2) are successfully applied to
capture non-rigid motions of human bodies and faces. Neverthe-
less, these systems are quite expensive and require actors/actresses
to stick a large set of optical markers on bodies or faces. To
overcome this drawback, marker-less solutions with video input
are extensively investigated in recent decades. Early works on this
topic are well surveyed in [13] and [14].

For multi-view video input, the shape of moving objects can
be directly reconstructed by shape-from-silhouette [15] or stereo
matching [16] methods for each frame. After that, techniques
like [17] are able to calculate the correspondences among all
frames by a non-sequential registration scheme. Besides, a pre-
defined template model can also be used to reconstruct the motion
of an object by deforming it to fit the multi-view video input [18],
[19], [20], [21], [22]. Beyond that, a skeleton can be further
embedded into the template to better capture kinematic motions
of moving objects [1], [2], [23], [24], [25]. Besides color cameras,
multiple depth cameras are also used in recent years [26], [27].
Recently, Dou et al. [28] used 8 customized RGBD cameras
to reconstruct dynamic scenes in real-time. The key volume
strategy in their pipeline helps to reconstruct complex motions
with topological changes. With the help of the depth information,

1. http://media.au.tsinghua.edu.cn/nonrigid.html
2. http://www.vicon.com/
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complex motions are expected to be better reconstructed. Although
the above solutions reconstruct articulate and/or non-rigid motions
without motion markers, the sophisticated multi-view systems
are still not easy to set up and cannot be applied to general
environment, which strictly limits their applications.

Monocular color or depth camera is a much more facilitative
device for capturing moving objects. Some works focused on rigid
scenes [29], [30], [31]. For kinematic body motions, Zhu et al. [32]
reconstructed 3D body skeletons by modeling human actions as a
union of subspace. Baak et al. [33] and Ye et al. [34] identified a
similar pose in a prerecorded database to reconstruct the human
pose for a video frame. Wei et al. [11] formulated the pose
estimation problem as a Maximum A Posteriori (MAP) framework
to achieve more robust skeleton estimation. Chen et al. [35] and
Ye et al. [36] used fast LBS and template fitting to estimate
pose transformations in real time, respectively. However, these
techniques only estimate kinematic motions of moving objects,
the full surface non-rigid deformations are not reconstructed.
Recently, Wu et al. [37] reconstructed the non-rigid body motion
with stereo input by exploring BRDF information and scene
illumination. Ye and Yang [38] proposed an exponential-maps-
based parametrization to estimate 3D poses and shapes. However,
these techniques utilize a skeleton to constrain the kinematic
motion space, which requires skeleton embedding and skinning
weight calculation. These two steps are crucial to the quality of the
final results and are difficult to be precisely achieved by automatic
methods. Furthermore, the skeleton restricts the techniques to be
applied only to articulate objects rather than general objects.

Besides exploiting skeleton models, data-driven methods are
also applicable to reconstruct body motions. Zhang et al. [39]
trained a regression model using several complete models of
the same person with the same mesh topology and then tracked
performer’s motion based on this model. Bogo et al. [40] exploited
texture information to estimate both geometry and appearance of
a human body based on an extended shape model.

On the other hand, pure non-rigid registration technique,
surveyed in [41], is an alternative solution to avoid using skeleton.
For alignment of articulated motions, Chang and Zwicker [42]
registered partial scans with articulated motions by solving for
the optimal transformation for each part of the shapes. In [43],
they furthermore used a reduced deformation model with the
linear blend skinning technique to align partial scans of artic-
ulated objects. Pekelny and Gotsman [44] detected and tracked
rigid components of articulated objects and accumulated their
geometries over time. For alignment of general non-rigid motions,
Li et al. [45] adopted the embedded deformation model from [9]
to simultaneously solve for correspondences, confidence weights
and parameters of a warping field. Wand et al. [46] applied a
subspace deformation method to generate dense correspondences
of the sequence and a complete geometry of the object. Mi-
tra et al. [47] exploited 4D information to estimate motions of
the underlying space-time surface. Li et al. [48] reconstructed
complete geometry and albedo models of users by non-rigidly
registering multiple partial scans in the presence of quasi-rigid
motions. Bojsen-Hansen et al. [49] extended the non-rigid surface
registration method to handle topological changes in liquid sim-
ulations. Liao et al. [50] applied a linear variational deformation
technique to stitch partial surfaces at different time instances to
generate complete models with corresponding motions, but limited
to continuous and predictable motions. Popa et al. [51] achieved
space-time reconstruction with a gradual change prior, which

Fig. 3. Non-rigid registration. (a,b) initial model with nodes and their
connectivity; (c) input depth; (d) result of the non-rigid registration;
(e) result of surface refinement.

caused it difficult to handle fast motions and long sequences. Li et
al. [52] and Zollhöfer et al. [53] reconstructed complex motions
using template tracking based on ICP-defined correspondences,
which achieved the state-of-the-art reconstruction. However, as
only smooth motion prior is involved in their deformation models,
strong articulate motions and large occlusions are difficult to be
handled especially for noisy depth input captured by a consumer
depth camera. In this paper, we propose a method that combines
the benefits of the skeleton based and non-rigid registration based
methods and demonstrate robust and accurate surface motion
reconstruction from a single-view depth input.

Most recently, [54] and [55] perform dynamic reconstruction
without initial geometry templates, which is more convenient for
data recording. However, with only smooth and rigid motion con-
straints, these techniques only handle slow and controlled motions
but not fast and complex motions as we do. Comparisons with our
method are demonstrated in the result section and supplementary
videos. Please note that our technique requires geometry templates
and offline processing while [54] achieves real-time performance.

3 OVERVIEW

Our goal is to reconstruct the non-rigid motions of deforming
objects from a single-view depth sequence. Different from exist-
ing solutions for reconstructing articulate motions [1], [23], our
method does not require the embedding of a predefined skeleton,
while still has the ability to robustly reconstruct the complex ar-
ticulate motions of dynamic objects. In addition to the input depth
sequence, we require the 3D mesh templates of the deforming
objects, which are obtained by depth fusion [56] using a single
depth sensor. In this way, the whole pipeline only relies on one off-
the-shelf depth camera. In most of our sequences, the performer
begins with a standard A-pose or T-pose which is the same to the
pose we use for modeling the template. Therefore, we use a rigid
ICP procedure to initialize the registration between the template
and the first depth frame. The energy formulation of the rigid ICP
includes both point-to-point and point-to-plane distances of mutual
correspondences between the template and the first depth map. To
prevent local minimum of the rigid ICP method, we adopt the
particle-based global optimization approach similar to [1], [57].
We initialize a group of particles which uniformly sample the
6-degree solution space. With increased iterations, the mass of
the distribution fitted by these particles converges to the global
minimum of the rigid ICP energy. For the scenes with multiple
objects, e.g., a pillow and a performer in one of our experiments,
we first use the object labels returned by Kinect SDK to segment
different objects. Then the above global optimization method is
used to find the solution for each of the objects separately.
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Our tracking pipeline automatically reconstructs object motion
and locates articulate joints as illustrated in Fig. 2. Overall, it
performs a forward-backward tracking strategy before all joints
located, and a simple forward tracking afterwards. In the forward-
backward strategy, an L2 based non-rigid registration, which
involves the current joint location information, is first performed
frame by frame sequentially (step 1 in Fig. 2). Simultaneously,
the reconstructed motion is accumulated until prominent articulate
motion on new joint is detected at one frame, defined as anchor
frame. Then the L0 based motion regularization is triggered to
locate the joint and refresh the articulate motion on the joint using
the reference from the previous anchor frame (step 2 in Fig. 2).
With the newly updated joint location information, the L2 based
non-rigid registration is performed again on this anchor frame and
also backwards (step 3 in Fig. 2) until the previous anchor frame
to refine the in-between articulate motion and reduce the non-rigid
tracking errors on the newly detected joint regions. This forward-
backward strategy goes on from one anchor frame to the next
detected anchor frame (step 4 to 6 in Fig. 2) until all articulate
joint regions are located. With the final joint location information,
the forward L2 tracking method alone (step 7 in Fig. 2) is able
to simultaneously reconstruct both articulate motions and the rest
non-rigid motions. Note that for each input frame, we perform
surface detail refinement (see Fig. 3(e)) as the last step to further
reconstruct detail motions recorded by the input depth.

4 METHOD

Given a captured depth sequence {D1, D2, ..., Dn}, the proposed
tracking strategy performs L2 based regularizer and/or L0 based
regularizer for each frame Dt. In the following, we will first
introduce our novel L2 based non-rigid registration which involves
joint location information, and then our proposed L0 based motion
regularization which update the joint location information. Then
we describe our scheme to select between these two regularizers.
Finally, we introduce the backward tracking and the detail refine-
ment steps to calculate the final output of our system.

4.1 L2-based registration with joint information
Given a depth frame Dt (t = 1, ..., n) and a mesh M t−1 which
is roughly aligned with the current depth Dt, our L2 based non-
rigid registration method further deforms M t−1 to fit Dt, guided
by the joint information of the deforming object. For conciseness,
we ignore the time stamp t in the following derivations. Following
the state-of-the-art method [52], the deformation of a mesh M
is represented by affine transformations {Ai, ti} of some sparse
nodes {xi} on the mesh (Fig. 3(b)). For a particular mesh vertex
vj , its new position after the non-rigid deformation is formulated
as:

v′j =
∑

xi∈N (vj)

w(vj , xi)[Ai(vj − xi) + xi + ti], (1)

where w(vj , xi) measures the influence of the node xi to the
vertex vj . Please refer to [52] for details about extracting xi
from the mesh and calculating w for all mesh vertices. Given
the deformation model, the estimation of {Ai, ti} is achieved by
minimizing the following energy:

Etol = Efit + αrigidErigid + αsmoEsmo, (2)

where

Efit =
∑
vj∈C

αpoint‖v′j − cj‖22 + αplane|nT
cj (v

′
j − cj)|2. (3)

which forces vertex vj to move to its corresponding depth point
cj especially along the normal direction of cj . C includes all
vertices that have correspondences in the depth D. Erigid restricts
the affine transformation to be as rigid as possible, which is
formulated as:

Erigid =R(Ai) =
∑
i

(
(aT

i1ai2)
2+(aT

i2ai3)
2+(aT

i3ai1)
2+

(1− aT
i1ai1)

2+(1− aT
i2ai2)

2+ (1− aT
i3ai3)

2
)
,

(4)

where ai1, ai2 and ai3 are column vectors of Ai.Esmo defines the
L2 regularizer which constrains the consistent motion difference
on the spatial domain. Namely, the affine transformation of a node
should be as similar as possible to those of its neighboring nodes:

Esmo=
∑

xi

∑
xj∈N (xi)

rijw(xj , xi)‖Ai(xj−xi)+xi+ti−(xj+tj)‖22. (5)

The neighborhood of the nodes is shown as graph edges in
Fig. 3(b) and is defined by the method in [52]. The minimization
ofEtol is performed in an Iterative Closest Point (ICP) framework,
where C is updated by closest point searching and parameters are
also updated during the iterations. We exactly follow [52] to set
parameters in our implementation. Please refer to their paper for
details.

The difference between Eqn. 5 and the previous smooth term
used in [52] is the parameter rij , which encodes how much motion
smoothness should be assigned to two neighboring nodes i and
j. For articulate motions, rij should be 1.0 for nodes on the
same rigid part to enforce smooth constraint, while it should be
smaller for nodes on different sides of one motion joint to attenuate
the smooth constraint. However, previous techniques like [52] do
not explore such information, thus all node pairs have the same
smoothness strength. On the contrary, our method distinguishes
the two kinds of node pairs in processing the motion sequence
and uses rij to adaptively control the smoothness. To be specific,
rij is updated based on the result of L0 minimization illustrated
in the following subsection. We first initialize {rij} to be 1.0 for
all node pairs. Then, with the processing of an input sequence,
as more motion joints are detected by the L0 minimization,
more rijs are assigned small values to reduce the unreasonable
smooth constraints around joint regions. Thus our method can
reconstruct more accurate and more robust tracking results. In our
implementation, rij is set to 0.1 for the detected joint regions in
all tested sequences.

Notice that by simply involving rij in the smooth term of
L2 based motion registration, the joint location information is
successfully involved and we obtain a unified formulation to re-
construct both the articulate motion and the rest non-rigid motion.
Comparing with the two-step solution which first performs L0

based regularization and then L2 based registration in [12], the
unified optimization achieves better results as demonstrated in the
result section and the supplementary video.

4.2 L0-based regularization for joint update
As illustrated in Sec. 1, from single-view low quality depth input
captured by a consumer depth sensor, pure non-rigid registration
can not robustly and accurately reconstruct objects like a human
body or human hands, whose motions may have strong occlusions
which lead to inaccurate point-to-depth correspondences. But on
the other hand, these kinds of objects usually perform articulate
motions besides non-rigid motions. To pursue good tracking
results, previous works adopt skeleton embedding to explicitly
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exploit the articulate motion prior, which strictly restricts that
possible motion changes only happen on pre-defined skeleton
joints and prevents motion changes on other regions. This skeleton
embedding is similar to constrain the L0 norm of spatial motion
variation with a pre-defined distribution on the object. Based on
this observation, we propose an L0 based motion regularizer over
the existing non-rigid surface deformation framework to implicitly
utilize the articulate motion prior without the requirement of
skeleton embedding.

Attention should be paid here that, the proposed L0 regularizer
can not be applied to every input frame. Intuitively, although
the deformation change between two temporal successive frames
contains both articulate motions and non-rigid motions, the mag-
nitude of the articulate motions is too small and ambiguous to
be distinguished from the non-rigid motions. If L0 regularizer
is applied to these tiny motions, the articulate motions will also
be pruned with the non-rigid motions by the L0 regularizer,
which will lead to tracking failure. Therefore, we only apply L0

regularizer to some anchor frames, and track the kinematic motion
and shape of an anchor frame using the previous anchor frame as
a reference.

Specifically, given the initial vertex positions {v′j} of the new
anchor frame obtained by the L2 non-rigid tracking in Sec. 4.1,
we estimate the refined implicit articulate transformation {A′i, t′i}
by minimizing the following energy function:

E′tol = E′data + α′rigidE
′
rigid + α′regE

′
reg. (6)

Here,E′data constrains that the transformation to be solved should
deform the object of the previous anchor frame to a similar pose
obtained by the L2 optimization, thus the result still fits the input
depth:

E′data =
∑
j

‖v′′j − v′j‖22, (7)

where v′′j is the vertex position defined by the transformation to
be solved:

v′′j =
∑

xi∈N (vj)

w(vj , xi)[A′i(vj − xi) + xi + t′i]. (8)

E′rigid has the same formulation as shown in Eqn. 4:

E′rigid = R(A′i). (9)

E′reg brings the articulate motion prior into the optimization.
It constrains that motions defined on the nodes do not change
smoothly over the object but only change between sparse pairs
of neighboring nodes. This is a plausible assumption because of
the fact that the nodes on the same body part mostly share the
same motion transform. We therefore formulate this term as an L0
regularizer as:

E′reg =
∑

xi

∑
xj∈N (xi)∩Ei

‖‖Dxij‖2‖0,

Dxij =A′i(xj − xi) + xi + t′i − (xj + t′j).
(10)

Here Ei = {xj |rij = 1} is the neighbor set in which each
edge between xi an xj is subject to the unattenuated smooth term
constraint. ‖Dxij‖2 represents the magnitude of the motion dif-
ference, and E′reg measures the L0 norm of the motion difference
between all pairs of neighboring nodes except the pairs around
already detected joint regions. This is reasonable because those
nodes may have totally different motions. In our implementation,
α′rigid is set to 1000, and α′reg is set to 1.

Eqn. 6 is difficult to be optimized as the E′reg term brings a
discrete counting metric. Inspired by the solver described in [58],

Fig. 4. Color coded normalized magnitude of {kij} on the vertices
during iterations in solving L0 minimization. Blue color stands for
lowest (0.0) magnitude, green for higher and red for the highest
(1.0) magnitude. (a) the previous L0 anchor frame; (b-e) some of
the intermediate iteration steps.

Fig. 5. Comparison of L0 and L2 based motion regularization on
some anchor frames. The first row shows the tracking results of using
L2, while the second row shows the results of using L0. The vertices
with non-zero motion difference (kij 6= 0) in the first L0 iteration are
marked orange.

we split the optimization into two subproblems by introducing
auxiliary variables into the energy function. Notice that the
original L0 optimization is computational intractable, and our
solution is only an approximation. However, the proposed method
is effective to get a good enough solution.

We introduce auxiliary variables {kij} and reformulate the
optimization problem as:

min
A′
i,t

′
i,kij

E′data + α′rigidE
′
rigid

+
∑

xi

∑
xj∈N (xi)∩Ei

λ‖‖kij‖2‖0 + β‖Dxij − kij‖22.
(11)

Here kij is an approximation to Dxij . To solve this problem,
we alternatively fix {A′i, t′i} to solve {kij} and fix {kij} to solve
{A′i, t′i}. If {A′i, t′i} are fixed, the minimization is formulated as:

min
kij

∑
xi

∑
xj∈N (xi)∩Ei

λ‖‖kij‖2‖0 + β‖Dxij − kij‖22. (12)

As {Dxij} are invariant, Eqn. 12 has a close form solution:

kij =

{
0 if ‖Dxij‖22 < λ/β

Dxij if ‖Dxij‖22 ≥ λ/β
(13)

If {kij} are fixed, Eqn.11 has the following formulation:

min
A′
i,t

′
i

E′data + α′rigidE
′
rigid +

∑
xi

∑
xj∈N (xi)∩Ei

β‖Dxij − kij‖22. (14)

Eqn. 14 formulates a pure L2 based optimization problem. We
solve it by the Gauss-Newton method.

In solving Eqn. 11 with this iterative method, the parameters λ
and β need to be changed in the iterations. In all our experiments,
we fix λ to be 0.02, and set β to be 1.0 in the first iteration
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and multiplied by 2 after each iteration until β exceeds 106.
This guarantees that Eqn. 11 defines a good approximation of the
original problem. Fig. 4 illustrates the vertex motion magnitude
during the L0 iteration updates. Comparing with the pose at
previous anchor frame, we see that the crotch between two legs
has noticeable motion. Correspondingly, this region is successfully
detected by the algorithm as an articulate region at the beginning
of the iterations. With iterations going on, more articulate regions
are implicitly detected, as shown in Fig. 4(b-e).

After the L0 minimization, the set of {kij} is a good indicator
of the joints which have apparent motions between this anchor
frame and the previous one. Based on this observation, we use the
following formulation to update {rij}:

r′ij =

{
0.1 if kij 6=0
rij otherwise

(15)

Here, r′ij is the value after update. Notice that with more joint
regions detected, more rijs are set to small values, so the total
strength of smooth constraint becomes smaller. To avoid the
diminishing of the smooth constraint, we increase the coefficient
of smooth energy term by αnew

smo=αsmo(
∑
rij)/(

∑
r′ij). Thus

the total smooth energy does not decrease, while the smooth
constraint becomes relatively stronger in the non-joint regions.
With the newly updated {rij}, the L2 minimization integrates
more information about the distribution of articulate motions on
the 3D model, thus is more effective in reconstructing motions.
From our experiments, we see that after several L0 optimizations,
we are able to detect all motion joints and then the L2 optimization
alone is able to reconstruct both articulate motions and non-rigid
motions. This saves much computation time compared to our
preliminary solution. The details are demonstrated in the result
section.

It is also important to note, after the L0 minimization, the
articulate motions are well reconstructed while other non-rigid
motions are removed. To reconstruct those non-rigid motions, we
run the L2 based non-rigid registration with the updated joint
location information. As the L2 based non-rigid registration is
able to jointly estimate articulate motions and the rest non-rigid
motions with correct joint location information, the newly refined
result has got rid of the accumulated error of the non-rigid tracking
and thereby achieves better results.

Some results on the effectiveness of our proposed L0 regular-
ization are illustrated in Fig. 5 and the secondary supplementary
video. Compared with the traditional non-rigid registration (the
top row) which smoothly blends the relative deformation across
the human body joints, our L0 based regularizer (the second
row) effectively concentrates these motions to the right joints, and
thereby substantially removes the deformation artifacts.

4.3 Anchor frame detection
As stated in Sec. 4.2, since the articulate motions between two
neighbor frames are usually small, the pruning based L0 regular-
ization may incorrectly prune the articulate motions, causing the
ineffectiveness of the L0 optimization. Our key idea to overcome
this problem is to accumulate motions of every frame from the
previous anchor frame:

Ãt
i = A′i ∗ Ãt−1

i , t̃ti = t′i + t̃t−1
i . (16)

where {A′i, t′i} and {Ãt
i, t̃ti} denote the current and accumulated

motion of node i at time t, respectively. With the accumulation, if
the object is performing some articulate motion, the spatial motion

variation around the joint of the articulate motion will become
larger and larger while the spatial motion variation caused by
other non-rigid deformation stays at the same level. By analyzing
the distribution of the spatial motion variation, we detect an
anchor frame that has large enough articulate motions. The L0

regularization is then triggered and the pruning algorithm in
Sec. 4.2 is performed on the detected anchor frame by referring to
the previous anchor frame.

In practice, we calculate the variance for all ‖Dxij‖2, where
Dxij is calculated by the accumulated motion {Ãi, t̃i}. If the
variance is larger than θ at a particular frame, we set this frame as
an anchor frame where the L0 based motion regularization will be
performed. The value of θ in [0.01, 0.03] usually gives reasonable
results, while smaller or larger value may bring artifacts. In all
our experiments, we set θ to be 0.02. Our supplementary material
shows all the detected anchor frames in several motion sequences.

Notice that the primary goal of detecting an anchor frame and
performing L0 based regularization is to locate new joints on the
tracked object. As a consequence, if articulate motion happens on
an detected joint, there is no need to locate the joint again. So we
check ‖Dxij‖2 only for regions that are not regarded as joints at
the current step. With this manner, the number of anchor frames is
further reduced which lead to less computation time for handling
an input sequence.

4.4 Backward tracking and surface refinement
After refining the tracking result on the newly detected anchor
frame, we need to update the frames between the previous anchor
frame and the current anchor frame since the L2 based registration
in the forward tracking does not involve the newly detected joints
in {rij}. To achieve this, we perform a backward L2 based non-
rigid tracking with the newly updated joint location information.

Notice that the number of joints is always limited for any
deforming object. When all the joints are located by the L0 based
regularization, there will be no new anchor frames detected and
this backward tracking will no longer be triggered, which will
also lead to a fast processing of an input sequence.

After the tracking of each input frame, we further reconstruct
surface details of the captured objects. To achieve this, we first
subdivide the current mesh model and then utilize the method
in [52] to synthesize surface details from the captured depth. This
step will also keep the final results to be consistent in the temporal
domain.After the detail refinement, we take the result of current
anchor frame as an initialization to perform L2 non-rigid tracking
for the following frames and detect the next anchor frame. Such
tracking cycle goes on until the last detected anchor frame.

5 EXPERIMENTS

We recorded 12 test sequences consisting of over 7000 frames
using a single Kinect 2.0 camera or an Intel IVCam camera. The
Kinect camera is used for capturing full human body motions
while the IVCam camera is for capturing hand motions and
facial expressions. During data capture, the camera remains fixed.
Table 1 shows the details of our captured data. The experi-
ment sequences include fast human motions, e.g. “Sliding” and
“SideKick”, multiple kinds of objects, e.g. “Puppet” “Pillow1”
“Pillow2” “Face” and “Hand”, and motions with heavy occlu-
sions, e.g. “Pillow2” “Hand”and “Occlusion”. Besides, we also
use Vicon data and synthesized data with and without noise for
quantitative evaluation.
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Fig. 6. Results of our technique. For each result, we show a color image, the input depth and the reconstruction result. Notice that the color
image is only for viewing the captured motion. It is not used by our system.

error (mm)

20 40 60 80 100 120 140 160

p
e

rc
e

n
ta

g
e

 o
f 

s
e

q
u

e
n

c
e

 (
%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
our method

li method

zollhofer method

(a)

error (mm)

40 60 80 100 120 140 160 180 200

p
e

rc
e

n
ta

g
e

 o
f 

s
e

q
u

e
n

c
e

 (
%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
our method

li method

per-frame L0

zollhofer method

(b)

error (mm)

100 200 300 400 500 600 700 800

p
e

rc
e

n
ta

g
e

 o
f 

s
e

q
u

e
n

c
e

 (
%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
our method

li method

zollhofer method

(c)

Fig. 7. Comparisons of accumulative error distributions. (a) accumulative error distributions on Vicon sequence. The x-axis represents the
average distance between vertices and their ground truth marker positions; y-axis shows the accumulative error distributions. (b) accumulative
error distributions of different methods using a synthesized depth sequence without noise; (c) accumulative error distributions using the
synthesized depth sequence with 5 times Kinect noise. In figures (b) and (c), x-axis represents the average vertex error; y-axis shows the
accumulative error distribution.

After data capture, our motion reconstruction method is
performed offline. The template modeling step reconstructs a
mesh model with about 9000 vertices. After roughly aligning
the template with the first depth frame by sample-based global
optimization method [1], the tracking system runs with about 5
frames per minute. For each frame, about 9s is taken by the non-
rigid registration. The L0 based refinement requires 60s for one
frame. Notice that we implemented our method in C++ on a PC
with an 3.20 GHz 4-core CPU and 16 GB memory.

No. Frames No. Anchors No. Vertices No. Nodes Source
Dance 800 4 9427 260 Kinect
Kongfu 752 8 8734 249 Kinect
Pillow1 623 5 10446 249 Kinect
Pillow2 419 4 9848 281 Kinect
Puppet 800 2 9995 206 Kinect
Sliding 800 8 8734 249 Kinect

Girl 800 5 9501 270 Kinect
SideKick 400 6 8378 239 Kinect

Face 400 2 9850 299 IVCam
Hand 300 5 8923 260 IVCam
Elbow 500 2 9803 278 Kinect

Occlusion 500 2 10337 289 Kinect

TABLE 1. Statistics of the captured dataset in the experiments.

5.1 Reconstruction results

Our technique is capable to reconstruct various kinds of motions
of different objects, including human body motions, hand motions
and their interaction with objects. Some of the results are demon-
strated in Fig. 6, where the first column shows the results of pure
body motions in the “Sliding” sequence, which indicates that our
technique is capable for reconstructing fast motions and handling
self-occlusion caused by articulate motions. The second column
contains one result of the “Pillow1”sequence with human-object
interactions, where the actor is manipulating a non-rigid pillow.
The third column demonstrates human motion with loose cloth.
Together with the successful tracking of the human face and the
hand motion in Fig. 18 and the results in Fig. 1, it is demonstrated
that our method supports various object types with different shapes
and topologies, regardless of the existence of articulate structure
or not. Our method is also well compatible with surface detail
reconstruction method, see the sophisticated geometry obtained
on the “Girl” models. For more sequential reconstruction showing
the temporal coherency, please refer to our supplementary videos.

5.2 Comparison

We first compare our method with [52] and [53], two state-of-
the-art methods which perform the similar task as we do. For
quantitative comparison, we use Vicon motion capture system to
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record the ground truth motions of some sparse markers. And
to further achieve dense comparisons, we use pre-reconstructed
performance capture data as the ground truth and synthesize single
view depth as the input of the three methods. For qualitative com-
parisons, we run these methods on real captured depth data and
render the results for visual comparisons. Recently, [54] and [55]
also demonstrated impressive results on dynamic reconstruction,
so we also compare our method with these two. Please notice
that these two methods have a slightly different goal from ours
that they do not use initial templates and do not aim to handle
fast and complex motions. In addition, we compare our results
with those produced by [39] which tracked body motions using
a single RGBD camera based on a regression model trained by
several different poses. Finally, we compare our results with the
original version [12]. In general, the new version achieves similar
results in handling ordinary motions but achieves performance im-
provement and gives better results in some challenging articulate
motions, including repeating motions and occluded motions. We
will demonstrate this in the end of this subsection.

5.2.1 Comparison with [52] and [53]
To achieve the comparison on motion capture data, we first
synchronize Vicon and Kinect using infrared flash, and manually
register markers of Vicon system with vertices on the template
mesh. Then for each frame, after reconstructing the meshes by the
three methods, we calculate the average L2 norm error between
the markers and the corresponding vertices. Accumulative error
distribution curves for all the three methods are shown in Fig. 7(a).
Average numerical error of our method on short time range (before
frame 400) is 3.08 cm, compared with 4.88 cm of [52] and
12.79 cm of [53]. For longer time range (after frame 400), the
average errors of the three methods are 3.86 cm, 7.37 cm and
17.24 cm respectively, which indicates that our system handles
error accumulation much better compared to [52] and [53]. This is
due to the L0 optimization that refines the tracking results on the
detected anchor frames and the improved L2 optimization on the
other frames. Visual comparison of this experiment is shown in
Fig. 8. We see the artifacts and tracking failures of [52] and [53]
in the selected frames.

To quantitatively measure the reconstruction errors on dense
surface points, we use motion sequences captured by [1] as the
ground truth. We render depth maps from a fixed viewpoint as
the input of different reconstruction methods. The reconstruction
errors on one frame are demonstrated in Fig. 9, with accumulative
error distributions shown in Fig. 7(b) and average errors shown
in Table 2 (the first row). From these comparisons, we see our
solution generates better results. This improvement benefits from
the L0 based motion regularizer, which dramatically constrains
the motion space and makes it possible to reconstruct complex
motions from the limited input. Note that the errors are measured
using all the vertices of the body model (not only the visible ones),
in which lots of occluded body parts are inferred by the methods.
As the motion space is well constrained by the L0 optimization,
we give more plausible results in these parts.

Method [52] [53] Per-frame L0 Proposed
without noise 42.1 789.6 42.1 37.4

with noise 253.4 814.5 247.2 153.8

TABLE 2. Comparisons of average errors (mm) on synthetic se-
quences. These errors are obtained by averaging the per-frame errors
of all frames in the sequences.

Fig. 8. Visual comparison on Vicon data. (a) our result (left) and that
of [52] (right) on frame 506; (b) our result (left) and that of [53]
(right) on frame 625. The green balls represent vertices corresponding
to markers in Vicon system.

Fig. 9. Visual comparison on a synthetic sequence. (a) input depth;
(b) result of our method; (c) result of per-frame L0 minimization; (d)
result of [52]; (e) result of [53]. The color coded per-vertex error is
the Euclidean distance between a vertex and its ground truth position.

We also add 5 times synthetic noise generated by the Kinect
noise model [59] on the ground truth depth. The accumulative
error distributions are shown in Fig. 7(c) and comparisons of
average errors are shown in Table 2 (the second row). The visual
comparison of the three methods on this synthetic experiment is
presented in Fig. 10. These experiments indicate that our method
generates better tracking results under such large amount of noise,
which validates our robustness to noisy input.

In Fig. 11, we visually compare our method with [52] and [53]
on real captured data. From the comparison, we see that our
method outperforms [52] on the left foot, while [53] fails to track
this pose caused by fast motion. In Fig. 18, we compare our
method with [52] on face, body and hand sequences. Since there
is no evident articulate motion in the face sequence, our method
is similar to [52]. However, on articulate sequences of body and
hand, our method prevents tracking failures and local misalign-
ment which appear in the results of [52]. More comparisons on
motion sequences are shown in the supplementary videos.

5.2.2 Comparison with [54] and [55]
We also compare our algorithm with the latest methods, New-
combe et al. [54] and Dou et al. [55]. Fig. 16 and Fig. 17 demon-
strate that their methods fail in reconstructing the dynamic scenes
of Sliding and Hand. This is also claimed as a limitation in [54].
On the contrary, our technique robustly handles fast motion due
to the L0 regularization. We also quantitatively compare our
algorithm with [54] and [55]. Fig. 12 shows the error distributions
on Puppet sequence, and Fig. 13 presents average numerical errors
of the three methods. Our method achieves substantially lower
numerical errors than the other two methods. Notice that [54]



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 10. Visual comparison on a synthetic sequence with 5 times
Kinect noise. (a) input depth; (b) result of our method; (c) result
of [52]; (d) result of [53]. Note that [53] has lost tracking of this
sequence in previous frames.

Fig. 11. Visual comparison on Kongfu sequence. (a) input depth; (b)
result of our method; (c) result of [52]; (d) result of [53].

and [55] do not aim to the same goal as we do. They mainly
focus on reconstructing a scene without initial templates while
we use templates to reconstruct complex and fast motions in the
scene. The comparisons corresponding to Fig. 16 and Fig. 17 are
also included in the primary video.

5.2.3 Comparison with [12]
Frequently repeating motions may cause error accumulation in
the reconstructed articulate motions in [12]. As our improved L2

based method performs unified optimization to simultaneously
reconstruct articulate and non-rigid motions after joint region
detection, we get better results in handling this kind of motions.
Fig. 14 shows the reconstructed pose for the eighth elbow bending
motion in the “Elbow” sequence. Notice that the accumulated
errors in [12] lead to noticeable artifacts while our method
gives reasonable results. The sequence result is in the primary
supplementary video.

Our method also achieves more physically correct results on
invisible regions of the reconstructed scene. In Fig. 15, a performer
bends his arm, and the arm gets occluded by a pillow in the later
part of the sequence. Due to the occlusion, [12] produces unnatural

Fig. 12. Comparison of error distribution on sequence Puppet. (a)
presents the ground truth geometry; (b-d) present maps of error
distributions of our method, [54] and [55], respectively.
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Fig. 13. Comparison of per-frame average numerical errors on se-
quence Puppet. Green, red and blue curves present pre-frame average
numerical errors of our method, [54] and [55], respectively.

Fig. 14. Comparison with [12] on repeating motions. (a, c) results of
the method in [12]; (b, d) results of our method.

bending motion around the performer’s elbow. Our method has
detected the joint of the elbow in previous unoccluded frames
and this information is exploited in these later frames by low
smooth weights around the elbow, thus generating more correct
reconstructed results.

Besides the quality of the result, our method also achieves
better performance than [12]. First, we reduce the number of L0

optimization to 2∼8 times for all our motion sequences, which
saves at most 30 times of L0 optimization (about 30 minutes)
at most. Furthermore, after all joint regions detected, the time
consuming bidirectional tracking does not need to be performed
and is replaced by a forward tracking strategy. This means up to

Fig. 15. Comparison with [12] on occlusion motions. (a) presents
captured depth map; (b) and (d) present the reconstructed results of
our method on visible and invisible regions, respectively; (c) and (e)
present reconstructed results of [12] on visible and invisible regions,
respectively. Note [12] generates an unnatural bent elbow in (e).
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half of the computation time is saved. Numerical comparisons on
computation time of the entire sequence are shown in Table 3.
Comparisons on L0 computation time of each sequence are
presented in Table. 4.

Our method [12]
Seq. L0 frames Total time L0 frames Total time

Dance 4 297 mins 16 415 mins
Kongfu 8 317 mins 26 432 mins
Pillow1 5 202 mins 9 341 mins
Pillow2 4 135 mins 5 209 mins
Puppet 2 310 mins 2 378 mins
Sliding 8 375 mins 35 497 mins

Girl 5 331 mins 14 441 mins
SideKick 6 144 mins 17 232 mins

Face 2 171 mins 2 212 mins
Hand 5 120 mins 6 164 mins
Elbow 2 153 mins 9 269 mins

TABLE 3. Performance comparisons with [12] on the entire sequence.

Seq. Our method [12]
Dance 233 secs 941 secs
Kongfu 445 secs 1615 secs
Pillow1 285 secs 522 secs
Pillow2 228 secs 289 secs
Puppet 114 secs 131 secs
Sliding 465 secs 2236 secs

Girl 279 secs 855 secs
SideKick 371 secs 1035 secs

Face 97 secs 99 secs
Hand 315 secs 354 secs
Elbow 117 secs 575 secs

TABLE 4. Performance comparisons with [12] on L0 optimization.

5.2.4 Comparison with [39]
We compare our method with [39] which also uses a single depth
camera to track body motions. [39] trains a regression model
for surface deformations based on a group of complete models
(usually 8 models) with different poses of the same performer
wearing the identical clothes. For this comparison, we select 8
models from our results of “Sliding” and “Sidekick” sequences (the
first row in Fig. 19). In these two sequences, the same performer
wears the identical clothes, and these 8 models have the same
mesh topology and represent different articulated motions of the
performer. Based on the regression model trained by these poses,
we track the body motions using the same non-rigid registration
method as in [39]. Due to the fast motions and intense depth noise,
[39] fails to reconstruct the motions around the performer’s feet.
By contrast, benefitting from the `0 sparse constraint and improved
`2 tracking method, our algorithm produces better results. The
corresponding results are also demonstrated in the primary video.

5.3 Validation
In this subsection, we validate some key components of our
method. First, we evaluate the effectiveness of the anchor frame
detection by comparing it with a naive strategy that uses all frames
as anchors. Furthermore, we test how robust our method works
against the results of the anchor frame detection. As our system
relies on initial templates, we then evaluate how the accuracy of
the templates influences the results of our method. Finally, as it is
also applicable to use L1 minimization to replace L0 used in our
method, we compare the reconstructed results of the two strategies.

5.3.1 Anchor Frame Detection

Fig. 9(c), Fig. 7(b) and Table 2 have demonstrated the recon-
struction errors of using all frames as anchors. Due to the small
movement between two consecutive frames, the L0 scheme can
not distinguish the articulate motion, thus all motions are pruned
so that the geometry model remains fixed after L0 optimization.
Therefore, with the following L2 optimization, the performance
of per-frame L0 is similar to traditional L2 regularization.

To evaluate the robustness of our method against anchor frame
selection, we randomly shift anchor frames around their original
positions. Results of some selected frames are shown in Fig. 20.
From our experiments, we see that with 10 frames shifted for
anchor frames, our method always gives reasonable results, which
indicates that our method is insensitive to anchor frame selection.
But severe changes of anchor frames may violate articulate motion
assumption and generate artifacts, as shown in the last row of (c)
and (d) in Fig. 20. Notice that the original anchor frames are
usually about 50 frames apart in a normal speed motion sequence,
so 10 frames shift is relatively a large shift.

5.3.2 Initial Template

We evaluate our method using initial templates of different quali-
ties, reconstructed by 75% and 50% of the original model. We test
our method using these templates on “Sliding” sequence. Some
frames of the reconstructed results are shown in Fig. 21. For the
75% and 50% reconstructed templates, all articulate motions are
well reconstructed while only synthesized details appear to be a
little different to the result using the original template, indicating
that our method tolerates considerable smoothness and does not
always require high quality templates.

5.3.3 L1 Optimization

We compare L1 sparsity constraint with the proposed L0 method.
The difference is in Eqn. 10, where the L1 regularizer is E′reg =∑

xi

∑
xj∈N (xi) ‖Dxij‖1. We solve it using primal-dual internal

point method [60]. The comparison results are shown in Fig. 22.
Our L0 solver reconstructs motion in joint regions more accurately
and avoids artifacts.

5.4 Other types of depth input

In addition to the data captured by a single consumer depth
sensor, our technique is also applicable for other depth acquisition
techniques such as structure light [52] and binocular cameras [37].
This provides the extensive practicalities and enables more appeal-
ing applications. Results are shown in the supplementary video.

5.5 Limitations

The proposed L0-L2 non-rigid tracking approach is still limited in
tracking extremely fast motions. For instance, the supplementary
video shows a failure case that the tracking cannot catch up
the up-moving leg of a character. This is mainly because of the
frangibility of the vertex-to-point matching in dealing with fast
motions. Our method is also incapable of motions with serious
or long term occlusions. However, it naturally supports multi-
view depth input, which will effectively mitigate the occlusion
challenge. Unlike [54] and [55], we propose a template-based
motion tracking technique. The topology is predefined by the
template, so we are not able to handle topology changes.
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Fig. 16. Comparison of our method with [54] and [55] on sequence Sliding. Results of each row are arranged from left to right in chronological
order. The 1st, 2nd and 3rd rows present results of our method, [54] and [55] respectively.

Fig. 17. Comparison of our method with [54] and [55] on sequence Hand. Results of each row are arranged from left to right in chronological
order. The 1st, 2nd and 3rd rows present results of our method, [54] and [55], respectively.

Fig. 18. Visual comparisons with [52] on face, hand and sliding sequences. (b, e, h) depth input; (c, f, i) reconstruction results of our method;
(d, g, j) reconstruction results of [52]; (a) represents the first frame of face sequence and its template rendered at 3 different views. Note that the
Intel IVCam sensor only captures the front face of the performer. Since we track the facial expression using a general non-rigid deformation
method and do not exploit facial priors, the unobserved side face of the performer only moves with the front face due to the smooth term of
the energy, thus generating some unnatural deformations on both sides of the performer’s face.
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Fig. 19. Comparison of our algorithm with [39] on “Sliding” and
“Sidekick” sequences. The 1st row represents 8 models selected from
our results of the two sequences. These models present difference
articulated motions of the performer and are used to train a regres-
sion model for surface deformations. The performer in both of the
sequences wears the identical clothes, and the models have the same
mesh topology. The 2nd and 3rd rows demonstrate the results of our
method and [39], respectively.

Fig. 20. Evaluating the robustness to anchor frame selection. (a)
results of original anchor frame selection; (b) results of randomly
shifting anchor frames by 10 frames around their positions; (c, d)
results of randomly shifting by 20 and 30 frames respectively. The
three rows correspond to frame 150, 447 and 595 of Kongfu sequence
respectively.

6 DISCUSSION

We have presented a novel non-rigid motion tracking method using
only a single consumer depth camera. Our method outperforms
the state-of-the-art methods in terms of robustness and accuracy.
The key contribution of our technique is the combined L0-L2

tracking strategy which takes advantage of the intrinsic properties

Fig. 21. Evaluating the robustness to the quality of initial templates.
(a) Original template (top) and 75% (middle) and 50% (bottom)
reconstructed ones respectively. (b)-(d) Selected results of different
poses.

Fig. 22. Comparing L1 minimization with the proposed L0 minimiza-
tion. Left images in (a) and (b) are our L0 results and right ones are
approximation of L1.

of articulate motions to constrain the solution space. According to
experiment results, our method outperforms four previous state-
of-the-art non-rigid reconstruction algorithms and can robustly
capture full body human motions using a single depth sensor
without skeleton embedding.

Our L0 regularization is performed on the result of non-rigid
registration but is not limited to specific algorithms for getting the
results, which means it can be flexibly applied to other non-rigid
registration techniques for better reconstructions.
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