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Abstract. Edit propagation algorithms are a powerful tool for perform-
ing complex edits with a few coarse strokes. However, current methods
fail when dealing with light fields, since these methods do not account
for view-consistency and due to the large size of data that needs to be
handled. In this work we propose a new scalable algorithm for light field
edit propagation, based on reparametrizing the input light field so that
the coherence in the angular domain of the edits is preserved. Then,
we handle the large size and dimensionality of the light field by using a
downsampling-upsampling approach, where the edits are propagated in a
reduced version of the light field, and then upsampled to the original res-
olution. We demonstrate that our method improves angular consistency
in several experimental results.
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1 Introduction

In the last years, light fields [10] have gained attention as a plausible alterna-
tive to traditional photography, due to its increased post-processing capabilities,
including refocus, view shifting or depth reconstruction. Moreover, both plenop-
tic cameras (e.g. Lytro TM or Raytrix TM ) or automultiscopic displays [13]
usign light fields have appeared in the consumer market. The wide-spread of
this data has created a new need for providing similar manipulation capabilities
of traditional images or videos. However, only a few seminal works [6,7] have
been proposed to fill this gap.

Editing a light field is challenging for two main reasons: (i) the increased
dimensionality and size of the light field makes it harder to efficiently edit it, since
the edits need to be performed in the full dataset; and (ii) angular coherence
needs to be preserved to provide an artifact free solution. In this work we propose
a new technique to effectively edit light fields based on propagating the edits
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specified in a few sparse coarse strokes. The key idea of our method is to include
a novel light field reparametrization that allows us to implicitely impose view-
coherence in the edits. Then, inspired in the work by Jarabo et al. [7], we propose
a downsampling-upsampling approach, where the edit propagation routine is
done in a significantly reduced dataset, and then the result is upsampled to the
full-resolution light field.

In comparison to previous work, our results preserve view-coherence thanks
to the reparametrization of the light field, is scalable in both time and memory
and is easy to implement on top of any propagation machinery.

2 Related Work

Previous works mainly focus on edit propagation on single images, with some
extensions to video. Levin et al. [9] formulate a local optimization to propagate
user scribbles to the expected regions in the target image. The method requires a
large set of scribbles or very large neighborhoods to propate the edits in the full
image. In contrast, An and Pellacini [1] propose a global optimization algorithm
by considering similarity between all the possible pixel pairs in a target image;
they formulate propagation as a quadratic system and solve it efficiently by
taking advantage of its low-rank nature. However, this method scales linearly
with the size of the problem, and does not account for view coherence. Xu
et al. [15] improve An and Pellacini’s method by downsampling the data using a
kd-tree in the affinity space, which allows them handling large datasets. However,
they scale poorly with the number of dimensions.

Other methods propose to increase the efficiency and generality of the propa-
gation by posing as different energy minimization systems: Li et al. [11] reformu-
late the propagation problem as an interpolation problem in a high-dimensional
space, which could be solved very efficiently using radial basis functions. Chen
et al. [5] design a manifold preserving edit propagation algorithm, based on the
simple intuition that each pixel in the image is a linear combination of other pix-
els which are most similar with the target pixel. The same authors later improve
this work by propagating first in the basis of a trained dictionary, which is later
used to reconstruct the final image [4]. Xu et al. [16] derive a sparse control
model to propagate sparse user scribbles successfully to all the expected pixels
in the target image. Finally, Ao et al. [2] devise a hybrid domain transform filter
to propagate user scribbles in the target image. None of these works are designed
to work efficiently with the high-dimensional data of light fields, and might pro-
duce inconsistent results between views, that our light field reparametrization
avoids.

Finally, Jarabo et al. [7] propose a novel downsampling-upsampling propa-
gation method, which handles the high dimensionality of light fields. We solve
our problem efficiently inspired by their approach, although they do not enforce
view consistency. This is to the best of our knowledge the only work dealing with
edit propagation in light fields, while most previous effort on light field editing
have focused on local edits [6,12,14] or light field morphing [3,18].
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3 Light Field Editing Framework

The proposed algorithm can be divided into two parts. The first part is light field
reparameterization, while the other one is the downsampling-upsampling prop-
agation framework. The latter can be split into three phases: downsampling the
light field, propagation on the downsampled light field, and guided upsampling
of the propagated data.

We rely on the well-known two-plane parameterization of a light field [10],
shown in Fig. 1 (a), in which each ray of light r in the scene can be defined as a
4D vector which codes its intersection with each of the two planes r = [s, t, x, y].
One of the planes can be seen as the camera plane, where the cameras are located
(plane st), and the other as the focal plane (plane xy). Note that the radiance
can be reduced to a 4D vector because we assume it travels through free space
(and thus does not change along the ray). It is often beneficial to look at the
epipolar plane images of the light field. An epipolar volume can be built by
stacking the images corresponding to different viewpoints; once this is done, if
we fix e.g. the vertical spatial coordinate along the volume, we can obtain an
epipolar image or EPI (Fig. 1 (b)).

Fig. 1. (a) Two-plane parametrization of a light field. Plane Π represents the camera
plane of the light field, plane Ω represents the focal plane. Each camera location (s∗, t∗)
yields a different view of the scene. (b) A view located at (s∗, t∗) and epipolar image
Sy∗,t∗ . We can obtain an epipolar image by fixing a horizontal line of constant y∗ in
the focal plane Ω and a constant camera coordinate t∗ in the camera plane Π.

Once we model the light field with the two-plane parametrization, each pixel
in the light field can be characterized by an 8D vector when color and depth
information are taken into account. We thus express each pixel p in the light
field as a 8D vector p = [r, g, b, x, y, s, t, d], where (r, g, b) are the colors of the
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pixel, (x, y) are the image coordinates on plane Ω, (s, t) are the view coordinates
on plane Π and d is the depth information of the pixel. This notation will be
used throughout the rest of the paper.

3.1 Light Field Reparameterization

One of the main challenges when doing light field editing is preserving view
consistency. Each object point in the light field has a corresponding image point
in each of the views of it (excepting occlusions), and these follow a slanted line
(with slant related to the depth of the object) in the epipolar images. Here, we
exploit this particular structure of epipolar images and propose a well-designed
transformation of the light field data that will help preserve this view consistency
when performing editing operations.

This transformation amounts to reparameterizing the light field by assign-
ing to each pixel p a transformed set of xy coordinates, (x′, y′), such that the
pixel, in the transformed light field, will be defined by vector [r, g, b, x′, y′, s, t, d].
These new coordinates, will result in a transformed light field in which pixels
corresponding to the same object point will be vertically aligned in the epipolar
image, that is, will not exhibit spatial variation with the angular dimension; this
process is illustrated in Fig. 2, which shows an original epipolar image and the
same image after re-parameterization.

The actual computation of these new coordinates is given by Eqs. 1 and 2:

x′ = ψ(x, y, d) = x − (y − yc) · (d − 1), (1)

y′ = φ(x, y, d) = y − (x − xc) · (d − 1), (2)

where xc and yc are the coordinates of the middle row and middle column of the
epipolar images, respectively, in order to set the origin at the center, and d is, as
mentioned, the depth information of that pixel. Note that the reparameterization
can be applied to both the y− t slices and the x−s slices of the light field. Using
this simple transformation will help in maintaining view consistency within the
light field data.

3.2 Downsampling-Upsampling Propagation Framework

To efficiently address the propagation task, we build on the downsampling and
upsampling propagation framework proposed by Jarabo et al. [7]. The improved
downsampling-upsampling framework implements a three-step strategy to prop-
agate scribbles on the reparameterized light field. To enable efficient calcula-
tion, the downsampling-upsampling propagation framework first makes use of
k-means clustering algorithm [17] to downsample the light field data in the 8D
space. Then a global optimization-based propagation algorithm is applied to the
downsampled light field data. Finally, a joint bilateral upsampling method is
used to interpolate the propagated data to the resolution of the original light
field.
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(a) Epipolar plane image of original light field

(b) Epipolar plane image of reparameterized light field

Fig. 2. (a) Epipolar image Sy∗,t∗ of the original light field. (b) Reparameterized epipo-
lar image S′

y∗,t∗ .

Downsampling Phase. To dispose of the unacceptable poor propagation effi-
ciency due to the extremely large size of the light field data, and taking advantage
of the large redundancy in it, we use k-means clustering [17] to downsample the
original light field data to a smaller size data set. The downsampling phase suc-
cessfully decreases the data redundancy by representing all the pixels in one
cluster with the corresponding cluster center.

Given the original light field data we cluster the M ×N1 8D data points into
K clusters (K � N), and thus merely need to propagate within the K cluster
center points. Each cluster is denoted by Ck, k ∈ [1, 2, 3, ...,K], and each cluster
center is expressed as ck, k ∈ [1, 2, 3, ...,K]. The set ck, k ∈ [1, 2, 3, ...,K], is
therefore the downsampled light field.

Original scribbles drawn by the user to indicate the edits to be performed
also need to be downsampled according to the cluster results. A weight matrix
D ∈ R

M×N is used to record which pixel in the original light field is covered
with user scribbles by setting the corresponding element in the matrix to 1
where a user scribble is present, and otherwise set the corresponding element
to 0. Assume the original scribbles are expressed as S ∈ R

M×N , then the new
scribbles of the downsampled light field sk can be calculated as follows:

sk =
1

M0

∑

(i,j)∈{(m,n)|pmn∈Ck}
Dij ∗ Sij , (3)

M0 =
∑

(i,j)∈{(m,n)|pmn∈Ck}
Dij , (4)

where pmn, m = [1, 2, ...,M ], n = [1, 2, ..., N ] are 8D pixel vectors in the original
light field. We get the downsampled scribble set {sk}, k = [1, 2, ...,K], according
1 We can represent the light field as a 2D matrix composed of the different views, as

per common practice.
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to Eqs. 3 and 4. Considering the redundancy of light field data, a small value K
will be good enough to downsample the original light field.

Propagation Phase. After the downsampling phase, we get the downsampled
light field data ck, k ∈ [1, 2, 3, ...,K] and its corresponding scribble set {sk}. We
adopt the optimization framework proposed by An and Pellacini [1] to propa-
gate scribbles sk on the new light field data ck. We formulate the propagation
algorithm in Eqs. 5 and 6, and by optimizing this expression we can acquire the
propagated result ek.

∑

k

∑

j

ωjzkj(ek − sj)2 + λ
∑

k

∑

j

zkj(ek − ej)2, (5)

zkj = exp(−||(ck − cj) · σ||22), (6)

where ck = (rk, gk, bk, xk, yk, sk, tk, dk) is pixel vector of the new light field ck,
k ∈ [1, 2, 3, ...,K]; zkj is the similarity between pixel vectors k and j; σ =
(σc, σc, σc, σi, σi, σv, σv, σd) are the weights of each feature in the 8D vector used
to compute the affinity and thus to determine the extent of the propagation in
those dimensions; and ωj is a weight coefficient which is set to 1 when sj is not
zero and is otherwise set to 0. For a small number of cluster centers, i.e. a small
K, Eq. 5 can be solved efficiently.

(a) Original light field with scribbles (b) kd-tree algorithm

(c) Sparse control algorithm (d) Our proposed algorithm

(e) Central views of the light fields shown in (a), (b), (c), and (d).

Fig. 3. Light field editing result on a 3D light field (horizontal parallax only). We show
the initial scribbles drawn by the user and our result compared to that of two other
algorithms. Note that (e) shows the central views of the different light fields shown,
where the differences can be appreciated. Please refer to the text for details.
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Upsampling Phase. Finally, we need to calculate the edited result of all the
pixels in the original data set. In the upsampling phase, we utilize the propagated
result set ek to obtain the resulting appearance of each pixel in the full light
field.

For each pixel in the original light field, we find n nearest neighbor cluster
centers in the downsampled light field data set ck by using a kd-tree for the
searching process. Each pixel p will relate to one nearest neighbor cluster set Ω =
{cj , j = 1, 2, 3, · · · ,m} after the nearest neighbor search procedure. Then joint
bilateral upsampling [8] will be used in the upsampling process. More formally,
for an arbitrary pixel position p, the filtered result can be formulated as:

E(p) =
1
kp

∑

q↓∈Ω

eq↓f(||p ↓ −q ↓ ||)g(||Ip − Iq||), (7)

where f(x) and g(x) are exponential functions (exp(x)); q ↓ and p ↓ are the
positional coordinates of the downsampled light field; eq↓ is the color of the
pixel vector in propagated light field; Ip and Iq are the pixel vectors in the
original light field; and kp is a normalizing factor, which is the sum of the f · g
filter weights.

(a) Original with
scribbles

(b) kd-tree
algorithm

(c) Sparse control
algorithm

(d) Our proposed
algorithm

(e) Central views of the light fields shown in (a), (b), (c), and (d).

Fig. 4. Light field editing result on a 4D light field. We show the initial scribbles drawn
by the user and our result compared to that of two other algorithms. Note that (e)
shows the central views of the different light fields shown, where the differences can be
appreciated. Please refer to the text for details.
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(a) Original with
scribbles

(b) kd-tree
algorithm

(c) Sparse control
algorithm

(d) Our proposed
algorithm

(e) Center views of (a), (b), (c), (d)

Fig. 5. Another light field editing result on a more complex 4D light field. We show
the initial scribbles drawn by the user and our result compared to that of two other
algorithms. Note that (e) shows the central views of the different light fields shown,
where the differences can be appreciated. Please refer to the text for details.

4 Results

In this section we show our results and compare with two state-of-the-art edit
propagation algorithms: a kd-tree based method [15], and a sparse control
method [16]. In the result shown in Fig. 3, we recolor the light field propagating
a few scribbles on the center view of a 1 × 9 horizontal light field. We show the
original light field with user scribbles on the center view, the results of the two
previous methods, and our own, as well as larger center views for all for eas-
ier visual analysis. Our algorithm (vd) preserves the intended color of the input
scribbles better results, while avoids artifacts such as color bleeding into different
areas. In contrast, both the kd-tree (vb) and sparse control (vc) methods produce
some blending between the colors of the wall and the floor. This blending is also
responsible on the change of the user-specified colors, which are darker in vb and
vc, that our method propagates more faithfully.

In Figs. 4 and 5, we draw some scribbles on the center view of a 3 × 3 light
field. Again, we show the input scribbles, a comparison between the previous
methods and ours, plus larger central views. Similar to the results in Fig. 3, our
method propagates more faithfully the input colors from the user. In addition,
our method results into proper color segmentation based on the affinity of the
different areas of the light field, while the results of the kd-tree (vb) and sparse
control methods (vc) exhibit clear artifacts in form of blended colors, or wrongly
propagated areas.
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5 Conclusion

We have presented a light field edit propagation algorithm, based on a simple
re-parameterization that aims to better preserve consistency between the edited
views. We have incorporated it into a downsampling-upsampling framework [7],
which allows to handle efficiently the large amounts of data that describe a
light field. Our initial results show improvements over other existing edit prop-
agation methods. These are the first steps in a possible direction towards the
long-standing goal of multidimensional image editing. Further analysis and devel-
opments are needed to exhaustively test the validity of the approach.
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