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Abstract— In this paper, we propose a novel method for 4D
light-field (LF) depth estimation exploiting the special linear
structure of an epipolar plane image (EPI) and locally linear
embedding (LLE). Without high computational complexity, depth
maps are locally estimated by locating the optimal slope of
each line segmentation on the EPIs, which are projected by the
corresponding scene points. For each pixel to be processed, we
build and then minimize the matching cost that aggregates the
intensity pixel value, gradient pixel value, spatial consistency, as
well as reliability measure to select the optimal slope from a
predefined set of directions. Next, a subangle estimation method
is proposed to further refine the obtained optimal slope of
each pixel. Furthermore, based on a local reliability measure,
all the pixels are classified into reliable and unreliable pixels.
For the unreliable pixels, LLE is employed to propagate the
missing pixels by the reliable pixels based on the assumption
of manifold preserving property maintained by natural images.
We demonstrate the effectiveness of our approach on a number
of synthetic LF examples and real-world LF data sets, and show
that our experimental results can achieve higher performance
than the typical and recent state-of-the-art LF stereo matching
methods.

Index Terms— Depth estimation, epipolar plane image (EPI),
light field (LF), locally linear embedding (LLE).

I. INTRODUCTION

L IGHT field (LF) is a function that describes the amount
of light flowing in every direction through every point in

space. Unlike traditional 2D images, an LF contains informa-
tion about not only the accumulated intensity at each image
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point but also the separated intensity value of light rays in
all directions, which allows a wide range of applications,
especially in computer graphics, e.g., LF rendering, scene
reconstruction, synthetic aperture photography, or 3D display.

LFs are typically produced either by rendering a 3D model
or by photographing a real scene. In either case, a large
collection of viewpoints must be obtained to produce the LF
views. Nowadays, there are many devices for capturing LFs
photographically such as camera arrays or a gantry consisting
of a single moving camera [1]. However, the camera arrays are
hardware-intensive and need a complex calibration procedure,
and the less expensive gantry consisting of a single moving
camera is limited to static scenes. Recently, plenoptic cameras,
such as Lytro [2] and Raytrix [3], are becoming commercially
available, making it available to acquire a large number of
LFs for various scenes and can be applied in many specific
applications, in particular depth estimation.

The quality of depth maps has a significant influence in
the LF-related applications; however, it is a great challenge
to obtain a dense and accurate depth map due to its large
number of views in LF. To derive accurate and reliable depth
maps, many pioneering works for the LF depth estimation
have been done in the literature. According to whether to use
the epipolar plane image (EPI, 2D slices of constant angle
and spatial direction) or not, the LF depth estimation can be
simply divided into two categories.

A. Depth Estimation Approaches Employing EPI

To the best of our knowledge, the first attempt to utilize the
EPI for depth estimation was presented by Bolles et al. [4],
who detect edges in an EPI and fit straight-line segments
to the edges afterward to estimate the 3D structure. How-
ever, the basic line fitting is not robust enough, and con-
sequently, the quality of reconstruction is sparse and noisy.
Another approach was proposed by Criminisi et al. [5], who
decomposed the scene into a set of spatiotemporal layers
and obtained the disparities by exploiting the high degree
of regularity in the EPI volume. To achieve higher quality,
Wanner and Goldluecke [6], [7] applied a structure tensor to
yield high quality depth maps from 4D LFs. It enables the
generation of depth maps with higher accuracy; however, the
global optimization process is always computational expen-
sive, which hampers its practical usage.

B. Depth Estimation Approaches Without Employing EPI

Yu et al. [8] encoded 3D line constraints and applied the
constrained Delaunay triangulation to implement the LF stereo
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matching; however, this comes at a very high memory cost and
is vulnerable to severe occlusions. Chen et al. [9] introduced
a cost aggregation method based on the a bilateral consistency
metric (BCM) on the surface camera (SCam) [10]. However,
since Chen et al. [9] utilized the color of the reference pixel
as the mean of the bilateral filter, it is biased toward to
the reference view, and consequently has poorer performance
when the input images are noisy. Kim et al. [11] leveraged
coherence in massive LFs to reconstruct the depth. They
first computed the depth around object boundaries and then
dealt with the homogeneous interior regions with a fine-to-
coarse procedure instead of the standard coarse-to-fine (CTF)
approaches, which can yield precise object contours and ensure
smoothness in less detailed areas. However, the performance of
Kim et al. [11] would get worse for the surfaces with spatially
varying reflectance, since they violate the assumptions behind
the radiance density estimation. In addition, Tao et al. [12]
proposed a dense depth estimation algorithm by combining
both the defocus and correspondence depth cues simultane-
ously. However, it will result in incorrect depth estimations
for the regions that are too far from the main lens’s focus
plane.

To improve the accuracy of depth maps while maintaining
relatively lower computational complexity, we present a new
depth estimation algorithm by analyzing the structure of the
EPI in this paper. In the EPI, every corresponding pixel is
projected onto a line, whose slope reflects the depth (or inverse
disparity) of the corresponding scene point. Inspired by this,
we present an efficient way to select the optimal slope of
the corresponding line, from a given candidate angle set,
as the one minimizing the devised matching cost along the
linear trace, which is more robust and much simpler than
the point correspondences in 2D images. The proposed cost
aggregation approach incorporates the intensity pixel value,
gradient pixel value, spatial smoothness consistency, as well as
reliability measure to improve the accuracy of the slope while
reducing noises in homogeneous regions. Next, we devise
a subangle estimation method to further refine the obtained
optimal slope value of each pixel, utilizing the selected best
angle as well as the two closest candidates in reverse direction.
Furthermore, for each pixel, we observe its matching cost
curve to identify its disparity reliable or not. Finally, we
employ the locally linear embedding (LLE) method to estimate
disparity of unreliable pixels. Since the disparity is calculated
by locating the orientation of each line segmentation, the slope
can range from 0 to ∞, which has a larger scale of disparity
range. Besides, the computational complexity of our method is
greatly reduced compared with other methods, since no global
optimization is imposed.

To demonstrate the effectiveness of our proposed method,
we carry out the LF depth estimations over a large range of
data sets, from synthetic LFs up to real-world examples from
several sources. All the experimental results verify the supe-
riority of our method over other existing LF depth estimation
methods.

The reminder of this paper is organized as follows.
Section II provides a brief introduction of the LF structure
analysis. In Section III, the proposed local depth estimation

Fig. 1. 2PP of a 4D LF by coordinates (u, v) in the image plane �uv and
coordinates (s, t) in the camera plane �st , which describes the projection of
every 3D point P into every camera.

method is investigated in detail. Section IV provides the
detailed description of disparity labeling and enhancement
followed by the experimental results given in Section V.
Finally, the conclusions are given in Section VI.

II. LIGHT-FIELD STRUCTURE ANALYSIS

A number of ways have been proposed to represent LF,
e.g., two-plane parameterization (2PP) and the sphere–sphere
and sphere–plane parameterizations. In this paper, we adopt
the 2PP, as shown in Fig. 1, for depth estimation due to its
simple structure and high efficiency. In 2PP, the direction is
parameterized using two paralleled planes, i.e., the camera
plane �st and the image plane �uv. The camera plane �st
is at z = 0 and the image plane �uv is at z = 1, and thus, any
point in the 4D LF can be identified by its four coordinates
[s, t, u, v], and the coordinates of a ray pierces the first plane
at (s, t, 0) and intersects the second plane at (u, v, 1).

To better exploit the efficiency of 2PP, we consider the
structure of the 3D LF, i.e., a set of photographs captured along
a linear path (by a linearly translating camera). To visualize the
positional changes in �uv caused by the changing of camera
position, we draw out the horizontal line of constant v∗ in the
image plane and a constant camera coordinate t∗, resulting
the map called an EPI, which is shown in Fig. 2. It should
be noted that here we take the EPI by drawing a horizontal
line of each corresponding image as an example, and EPI can
also be formed by drawing out a vertical line of constant u∗
in the image plane and a constant camera coordinate s∗. It can
be easily observed that the EPI consisted of simple linear
structures, which are projected by corresponding scene points,
even though the photographs contain quite complex shapes
and intensity changes.

Given the geometry of Fig. 1, if we vary s, the coordinate u
changes as follows:

�u = − f

Z
· �s (1)

where �s is the geometrical distance between the two cameras
along the line and �u is the distance between the scene
points moved in the image plane. Equation (1) can also be
reformulated as

Z = − f
�s

�u
(2)
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Fig. 2. Definition of an EPI. The depicted EPI is related to the horizontal lines in the corresponding images.

where �s/�u is the slope of lines in the EPI. This expression
indicates that the real metric depth value Z is inversely
proportional to the slope of its line in the EPI. In other
words, the orientation corresponds to the depth (or inverse
disparity) of the corresponding scene point, which is defined
as the depth-slope relationship in this paper. Based on this
principle, we proposed our depth estimation algorithm, which
is introduced in detail in Section III.

III. LOCAL DEPTH ESTIMATION

Given the depth-slope relationship, the strategy of the pro-
posed LF depth estimation is outlined as follows.

1) Form an EPI for each row and column.
2) Define a cost aggregation method for each pixel in EPI

generated along the horizontal and vertical directions.
3) Refine the cost volume.
4) Select the optimal direction with the minimal cost from

the EPIs generated along the horizontal and vertical
directions.

5) Detect the unreliable pixels and fill them using the
LLE-based depth propagation method.

It should be noted that for the LFs only containing images in
the horizontal row or the vertical column, we only employ the
EPI generated along the horizontal or vertical direction, and
then select the optimal direction with the minimal cost from
the corresponding EPI. The pipelines of each step are given
in Sections III-A–III-C.

A. Optimal Orientation Selection

We locate the orientation of lines in the EPIs using the
matching cost aggregation method and the winner-take-all
method. Please note that the EPI consisted of homogeneous
regions bounded by straight lines, and the disparity can be
estimated by referring the orientation of the corresponding
straight lines. Inspired by this, the optimal orientation can be
selected from a given candidate angle set for each pixel to be
processed in the EPI image, as shown in Fig. 3. In particular,
given the EPI image Ei along the direction of i , with i being
horizontal or vertical, for each pixel located at o = (u, v), the
best angle can be selected as

θ∗(o, Ei ) = arg min
θ∈�

Cθ (o, Ei ) (3)

Fig. 3. Illustration of each candidate angle in terms of the pixel to be
processed.

where � represents the candidate angle set and Cθ (o, Ei )
represents the cost induced by selecting the candi-
date angle θ in Ei . Throughout this paper, � =
{0°, 1°, . . . , 180°} and i is an enumeration value, meaning
horizontal when i is 0 and vertical when i is 1 or vice
versa.

The optimal angle can then be selected as

θ∗(o) = arg min
i=0,1

Cθ∗(o,Ei )(o, Ei). (4)

In case there is only horizontal EPI or vertical EPI, the optimal
angle is computed immediately via (3). The corresponding
depth value can then be computed as d(o) = − f · tan(θ∗(o))
according to (2).

Obviously, the core of (3) is the definition of cost func-
tion Cθ (o, Ei ). Note that pixel intensity values exhibit quite
similar along the optimal direction within both the grayscale
image and the gradient image along the x- and y-axes,
respectively, as shown in Fig. 4. Here, we depict the EPI image
generated along the horizontal direction, and the corresponding
gradient images, obtained by Sobel operator, along both the
x- and y-axes of the EPI image, respectively. Obviously, there
is a high consistency between the grayscale and gradient
images, especially along the significant edge of the linear
structure within the EPI. Based on such an observation,
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Fig. 4. Illustration of intensity difference along the optimal direction
within the grayscale image and the gradient image along the x- and y-axes,
respectively.

Fig. 5. Process of extending the pixel set S(θ).

the cost function Cθ (o, Ei) is defined as

Cθ (o, Ei ) =
1

|S(θ)|
∑

q∈S(θ)

⎛

⎝
(1−α) min(‖I (q) − I (o)‖l , τ1)

+α min

( ‖Ix (q) − Ix (o)‖l

+‖Iy(q) − Iy(o)‖l , τ2

)
⎞

⎠ (5)

where S(θ) represents the pixel set along the candidate
angle θ , |S(θ)| represents the cardinality of S(θ), I is the
intensity of the grayscale image, Ix (o) and Iy(o) represent
the intensity value located at position o within the horizontal
and vertical gradient images, α is the weighting factor to
balance the energy between the two terms, and it is set to
0.7 throughout this paper, and τ1 and τ2 are the truncated sum
of absolute differences and set to 1 and 3, respectively. Tak-
ing the gradient images into consideration, the cost function
in (5) is able to reflect the linear structure of the EPI more
faithfully, and consequently able to improve the robustness of
the proposed method.

More generally, the more samples are considered, the more
robust the performance would be. However, in practice, there
are usually limited number of views within LF, which inhibits
the performance. To improve the accuracy of the estimated
optimal direction, we extend the pixel set S(θ) by adding
some lines on both the left-hand and right-hand sides of the
processed pixel having the same angle with the candidate one,
which is shown in Fig. 5. The matching cost for each pixel

within the extended set can be redefined as

Cθ,e(o, Ei ) =
∑

�∈X

exp

(
−‖�‖l

σs
− ‖I (o) − I (o + �)‖l

σc

)

×Cθ (o + �, Ei) (6)

where vector X = [(−L, 0), (−L + 1, 0), . . . , (L, 0)], where
L is set to be 2 or 3 in this paper, and σs and σc are the
two constants used to adjust the spatial similarity and color
similarity, respectively. Here, σs and σc are set to 5 and 1,
respectively. The weight of each extended sample depends on
not only the spatial distance but also the intensity difference
between the sample and the target pixel, which is able to reflect
the similarity between each sample and the target pixel to the
greatest extent. It should be noted that (6) employed bilateral
filtering [13] to smooth the plain regions while preserving the
edge regions within the cost function; consequently, it will
select the more reliable slope.

In (6), different values of error norm l can be tried, and the
comparison of choosing different error norms as cost function
is shown in Fig. 6. Here, we select four pixels (two unoccluded
points and two occluded points) within the EPI image and
then depict the corresponding cd − d curves for different
scene points. It can be observed that when l is equal to 1,
it always coincides with the ground truth for the unoccluded
case. Consequently, l is set to be 1 throughout this paper.

Utilizing (6), the optimal angular can be easily selected.
However, by selecting θ∗(o, Ei) with the minimal cost,
we found that the disparity map is very noisy in homogeneous
regions. To address this issue and make the results more robust
simultaneously, we add the spatial smoothness constraint in the
cost volume construction process as

C A
θ,e(o, Ei ) = (1 − λ)Cθ,e(o, Ei) + λ

1

|
|
∑

�∈


ωθ∗(o,�)

×|tan(θ∗(o + �, Ei)) − tan(θ(o, Ei))| (7)

where 
 = [(0,−1), (−1,−1), (−1, 0)], θ∗(�, Ei ) repre-
sents the optimal angle at position �, θ(o, Ei ) represents the
candidate angle at position o being processed, and λ is the
relative weight to balance the energy between the two terms.
It should be noted that since the raster scanning mode is
applied in this paper, the optimal angle at the positions in 

is available. Here, ωθ∗(o,�) can be formulated as

ωθ∗(o,�) = exp

(
−|I (o) − I (�)|

σc

)
· rθ∗(�) (8)

where rθ∗(�) is the local reliability measure, which is
described in Section III-B.

B. Local Reliability Measure

The optimal orientation generated by the simple winner-
take-all principle may be not accurate enough, especially
around the occlusion boundaries. To solve this problem, we
propose a reliability measure based on the SCam [10]. In short,
the SCam is an image that consists of all the projections
Is,t (u, v) of a 3D scene point o in each camera.

Here, we take the EPI generated by arranging images along
the horizontal line as an example, and it can be easily extended
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Fig. 6. cd − d curves for different scene points. Yellow lines: true orientation. The ground truth orientation always corresponds to the global minimum when
using error norm 1 while other functions do not. (a) Four different scene points within the EPI. (b) cd − d curve (green pixel). (c) cd − d curve (yellow
pixel). (d) cd − d curve (red pixel). (e) cd − d curve (blue pixel).

to the EPI by arranging images along the vertical line. Inspired
by [10], we generate SCam for each pixel o in single EPI E0
based on its depth d(o) = − f · tan(θ∗(o, E0)). Here, we
use od to represent the 3D point (u, v, d), where d is the
depth along ray [sr , t∗, u, v], with sr being the view that od

locates at. For every 3D point od , we back project it to every
camera (s, t∗) in the LF and denote the SCam as Ao(sr , t∗),
representing, at each (s, t∗) camera a ray (pixel) that passes
through od .

Then, we define the reliability measure of o as

rθ∗(o) = 1

|�|
∑

s∈�

1 − exp

(
− (Aod (s, t∗) − Aod (sr , t∗))2

2σ 2

)

(9)

where sr is the reference view at which od located at and �
is the set of pixels in the SCam that are not occluded.

However, since � in (9) is unknown, we employ the
BCM [9] to roughly estimate the probability of each pixel
in Aod (s, t∗) belonging to � as

P(Aod , s, t∗)

= exp

(
− (Aod (s, t∗) − Aod (sr , t∗))2

2σ 2
c

− (s − sr )
2

2σ 2
s

)
. (10)

If we assume that the size of � is at least N , then we have

� = {s|P(Aod , s, t∗) ≥ min(Pthreshold, P N )} (11)

where Pthreshold is a predefined threshold and P N is the N
highest BCM. In this paper, Pthreshold is set to 0.5 and N is
set as half of the total number of views.

C. Subangle Estimation

Since the cardinality of the candidate angle set is limited,
the generated disparity maps may be discontinuous for some
regions. To address the problem caused by quantization in
the orientation hypothesis selection process, we utilize a
subangle estimation algorithm based on quadratic polynomial
interpolation [14] to further improve the estimation accuracy.
In particular, we have

f (θ) = aθ2 + bθ + c (12)

and

θmin = d − −b

2a
(13)

where f (θmin) is the minimum of function f (θ). Given the
optimal angle value θ∗ obtained in (3), f (θ∗), f (θ∗−), and
f (θ∗+), the parameters a and b of the continuous cost function
can be calculated. Consequently, we have

θmin = θ∗ − f (θ∗+) − f (θ∗−)

2( f (θ∗+) + f (θ∗−) − 2 f (θ∗))
(14)

where θ∗− and θ∗+ represent the two closest candidates in the
reverse direction within the candidate angle set. Using the
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refined disparity, the overall procedure is applied again for
better results. In this paper, four iterations are sufficient for
appropriate results.

IV. DISPARITY LABELING AND ENHANCEMENT

To further improve the accuracy of the obtained depth
image, we also propose an enhancement method through
disparity labeling and disparity propagation, which is detailed
in this section.

A. Disparity Labeling

The calculation of local depth estimation only takes into
account the local structure of the LF, which may lead to
some inaccurate pixels. In this section, we will show how
we distinguish whether it is reliable or not. For each pixel,
if the variance of the cost over this pixel is smaller than a
threshold τreject, this pixel is regarded as unreliable, because
it does not have distinctive minimum values, namely, it is
within the textureless region. Moreover, if the reliability
measure is smaller than a threshold rreject, this pixel is also
regarded as unreliable. In this paper, τreject and rreject are set
to 0.01 and 0.5, respectively, when detecting the unreliable
pixels.

B. Disparity Propagation

To obtain the accurate values of unreliable pixels, in this
section, we propose a disparity propagation method. The
proposed propagation is performed with two assumptions.
First, the reliability of the estimated disparity should remain
unchanged or similar before and after disparity propagation.
Second, we should maintain the manifold structure formed
by the pixels in some feature space, for example, suppose
the grayscale value at pixel A can be obtained by linearly
combining those at pixels B and C , and then we deem the
disparity at pixel A also have this linear combination with
disparities at pixels B and C .

Our method is inspired by the LLE [15] and the work
of Chen et al. [16]. LLE can project data from a high
dimensional space to a low-dimensional manifold based on
the simple intuition that each sample can be represented by a
linear combination of its neighbors. In this paper, we define
the feature vector Xi as the grayscale value I and spatial
coordinate (x, y) to represent a pixel i . Given that the feature
vectors of all the pixels Xi , . . . , X N , for each pixel, we find
its K nearest neighbors, namely, Xi1, . . . , Xi K , and then we
compute linear coefficients ωi j that reconstruct each data point
from its neighbors by minimizing

min
ωi j

N∑

i=1

∥∥∥∥∥∥
Xi −

K∑

j=1

ωi j Xi j

∥∥∥∥∥∥

2

, s.t.
K∑

j=1

ωi j = 1. (15)

These coefficients ωi j can be derived according to [15]. In our
disparity propagation process, we should seek to maintain the
manifold structure by requiring di = ∑K

j=1 wi j di j in the depth
map. Here, di is the depth value at pixel i .

We define the pixels regarded as reliable in Section III as
a set �, and then propagate them to the whole depth map by
minimizing the following energy function:

E =
∑

i∈�
(di − gi)

2 + β

N∑

i=1

⎛

⎝di −
∑

z j ∈Ni

ωi j d j

⎞

⎠
2

(16)

where gi is the depth value of pixel in � and Ni is the set
of K nearest neighbors of pixel i . The first term ensures the
final result to be close to the estimated depth in �, while the
second term maintains the manifold structure in the feature
space.

The energy can be further written in a matrix form as

E = (D − G)T 
(D − G) + DT (I − W )T (I − W )D (17)

where D is a vector formed by concatenating all the reliable
di ’s, I is the identity matrix, 
 is a diagonal matrix, and G is
a vector with


ii =
{

λ, i ∈ �
0, otherwise

Gii =
{

gi , i ∈ �
0, otherwise.

(18)

Equation (17) is a quadratic function about D, which can be
minimized by solving the linear equation

[(I − W )T (I − W ) + 
]D = 
G. (19)

Equation (19) is a sparse linear system and can be solved
efficiently.

V. EXPERIMENTAL RESULTS

In this section, we verify the effectiveness of our proposed
depth estimation algorithm and compare our results with some
recent typical LF depth estimation approaches. We will first
give the visual comparison of our method and the existing
methods, and then provide the computational complexity.

A. Visual Comparison

Since the pipeline of the proposed method is composed of
several steps, we will first provide the step-by-step comparison
in Fig. 7. We provide the intermediate results by using the
initial cost volume, the reliability map, the detected unreli-
able pixels, and the estimated depth map after enhancement.
In Fig. 7(b), many small gray regions with irregular shapes
can be observed, which indicate that the depth estimation
via the cost volume is not reliable and contains many noise.
Fig. 7(c) shows the reliability map based on (8), where the
white pixels denote the regions with higher reliability, while
the black pixels represent the regions with lower reliability.
It can be observed that the pixels in plain regions with a similar
texture have a higher reliability, while the pixels with abrupt
texture changes or around the edge exhibit a lower reliability.
Fig. 7(d) shows the detected reliable and unreliable pixels.
The unreliable pixels, indicated by white pixels are further
processed by the proposed depth propagation by LLE. Fig. 7(e)
shows the final estimated depth after disparity labeling and
enhancement. It can be observed that the visual quality of the
estimated depth gets improved gradually, especially around
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Fig. 7. Results at different steps of our proposed algorithm. (a) Color
image. (b) Estimated map based on the initial cost volume (winner-takes-
all strategy). (c) Reliability map based on (8). (d) Unreliable pixels (the white
pixels indicate the detected unreliable pixels). (e) Estimated depth map after
disparity labeling and enhancement.

the edge region or the contour of the different objects, which
demonstrates the effectiveness of the proposed method.

We also compare our algorithm with other existing methods.
Here, we evaluate our algorithm not only on the synthetic LF
data sets used in [17] and [18] but also on the natural LF
examples used in [11]. The existing LF estimation approaches
we used in this paper are the globally consistent depth
labeling (GCDL) [6] and line-assisted graph cut (LAGC) [8]
as well as the CTF method [11]. We implement the code
of CTF and use the source codes of GCDL and LAGC
from the authors to carry out the depth estimation process.
Moreover, we compare our results with the classical multi-
view graph cut (MVGC) [19] and the efficient large scale
stereo (ELAS) [20], for which the source code of binocular
stereo matching is available in the authors’ homepage. It is
worth noting that LAGC only uses the images of ∼30 view-
points due to the limitation of memory capacity and the
computation complexity.

Figs. 8 and 9 show the visual results of our algorithm
and the existing methods on real LF data sets used in [11].
For Couch, over the continuous regions, such as the hippo,
GCDL and LAGC, produces smooth disparities, whereas some
homogeneous regions are missing, which can be observed
around the ears. However, the results of CTF and our proposed
method are more accurate and particularly good at preserving
edges. For the Statue in Fig. 9, GCDL and LAGC can yield
sharp edges, while both of them miss some information.
However, CTF and our proposed method achieve almost the
same performance.

Fig. 8. Qualitative comparison of the Couch image used in [11].
(a) Center view. (b) ELAS. (c) MVGC. (d) GCDL. (e) LAGC. (f) CTF.
(g) Ours.

Fig. 9. Qualitative comparison of the Statue image used in [11].
(a) Center view. (b) ELAS. (c) MVGC. (d) GCDL. (e) LAGC. (f) CTF.
(g) Ours.

We also test our method on several synthetic LF examples,
as shown in Figs. 10 and 11. In Fig. 10, there are wrong
repeated patterns around the contour of the Vase in the result
generated by ELAS, due to the large amount of disocclusion.
Besides, it is hard to observe the base. In the result generated
by MVGC, the base cannot be easily found and the background
is wrong. In the result generated by GCDL, there is serious
blurring artifact around the Vase and base regions. In the
result of CTF, chaos background can be observed, and the
contour of the Vase is contaminated by the noises, while in
the result generated by our proposed method, sharp edges can
be perceived in both the Vase and base regions. For the Bonsai
LF scene in Fig. 11, it is hard to distinguish the foreground
and background regions and has the poorest performance in
the result of ELAS. In MVGC result, there are significant
artifacts around the right-hand side wall and the left-hand
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Fig. 10. Qualitative comparison on the synthesized scenes (Lobby).
(a) Center view. (b) ELAS. (c) MVGC. (d) GCDL. (e) CTF. (f) Ours.

Fig. 11. Qualitative comparison on the synthesized scenes (Bonsai).
(a) Center view. (b) ELAS. (c) MVGC. (d) GCDL. (e) CTF. (f) Ours.

TABLE I

AVERAGE PROCESSING TIMES (s) ON A TYPICAL COMPUTER

(3.4 GHz INTEL DUAL CORE, 10G MEMORY)

side of the desk. In GCDL result, although the contour of
the foreground can be perceived, it is difficult to differentiate
the foreground and background regions, since the gray values
are very similar. In the results generated by CTF and our
method, both the foreground and the background can be clearly
observed and the best performance can be achieved.

B. Computational Complexity
Table I lists the average processing times (seconds/frame)

of each existing method and the proposed method when
conducting the depth estimation over the LF image Couch
(with a resolution of 360 × 512 and a view number of 101).
It should be noted that ELAS, MVGC, and CTF are exe-
cuted on CPU in C language, GCDL is executed on Graphic
Processing Unit (GPU) in C language, and ours is executed
on CPU in MATLAB. Here, number of views represent the
number of views employed during the depth estimation for
each view. Both the ELAS and MVGC utilize two views
to perform depth estimation, among which ELAS has the

fastest speed, requiring only 0.29 s to get the depth image
of each view. Since MVGC uses graph cuts to minimize
the energy function, the complexity is much higher than
ELAS, and needs ∼87.5 s to finish the depth estimation
for each view. Similarly, since GCDL employs the global
optimization to enforce the smooth transition among neigh-
boring regions, it has the largest computational complexity,
requiring 300 s to obtain the depth image for each view.
In LAGC, we only use 21 views to estimate the depth image
for each view, since the exe file downloaded from the authors’
homepage will collapse if the number of utilized view
exceeds 21 when the system memory is 10G. The average
processing time of LAGC is 59.3 s. In CTF, it takes ∼216.7 s
to finish the LF depth estimation. In our proposed method,
we fully use all the views of the LF, and the processing time
is ∼39.5 s, which is the fastest except ELAS. However, the
output of ELAS is much worse than the proposed method.
Since we employ the EPI structure of LF, it is very easy
to run the algorithm in parallel, and the expected processing
time can be further reduced. Overall, it can observed that the
proposed method is able to achieve the best visual quality
while spending much less time compared with the majority of
the existing methods.

VI. CONCLUSION

In this paper, we have presented an LF depth estimation
framework by taking into account the geometry structure of
EPI for LF. The relationship between the depth and slope
of the linear structure in the EPI is studied, inspired by
which a novel depth estimation approach is proposed by
locating optimal orientation. During the orientation selection
procedure, a spatial smoothness constraint is added to help
preserve the consistency in homogeneous regions. And then,
we introduce a scheme to detect and handle the unreliable
pixels to enhance the quality of the final depth map.

For depth estimation, we have experimented on both the
synthetic and real-world LF data sets and demonstrate that
our method has better performance than the existing methods
in the homogeneous areas as well as the edges. In addition, the
computation complexity of our approach is very low without
the need for global optimization.

The key component of our approach is the optimal orien-
tation selection procedure; however, this process is applicable
only for LFs with large numbers of densely sampled views.
When the number of views is fewer than 20, there is a
noticeable degradation in quality. In the future, we will try
to improve our framework using fewer views.
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