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Abstract

In this paper, we take advantage of the clear texture
structure of the epipolar plane image (EPI) in the light field
data and model the problem of light field reconstruction
from a sparse set of views as a CNN-based angular de-
tail restoration on EPI. We indicate that one of the main
challenges in sparsely sampled light field reconstruction is
the information asymmetry between the spatial and angular
domain, where the detail portion in the angular domain is
damaged by undersampling. To balance the spatial and an-
gular information, the spatial high frequency components
of an EPI is removed using EPI blur, before feeding to the
network. Finally, a non-blind deblur operation is used to
recover the spatial detail suppressed by the EPI blur. We e-
valuate our approach on several datasets including synthet-
ic scenes, real-world scenes and challenging microscope
light field data. We demonstrate the high performance and
robustness of the proposed framework compared with the
state-of-the-arts algorithms. We also show a further appli-
cation for depth enhancement by using the reconstructed
light field.

1. Introduction

Light field imaging [20, 13] is one of the most extensive-
ly used method for capturing the 3D appearance of a scene.
Early light field cameras such as multi-camera arrays and
light field gantries [33], required expensive custom-made
hardware. In recent years, the introduction of commer-
cial and industrial light field cameras such as Lytro [1] and
RayTrix [2] have taken light field imaging into a new era.
Unfortunately, due to restricted sensor resolution, they must
make a trade-off between spatial and angular resolution.

To solve this problem, many studies have focused on
novel view synthesis or angular super-resolution using a s-

Our reconstructed view

Ours Ground truthKalantari et al. [16]

Output EPIInput EPI

Figure 1. Comparison of light field reconstruction results on Stan-
ford microscope light field data Neurons 20× [21] using 3 × 3
input views. The proposed learning-based EPI reconstruction pro-
duces better results in this challenging case.

mall set of views [25, 26, 28, 35, 37] with high spatial res-
olution. Recently, Kalantari et al. [16] proposed a learning-
based approach to synthesize novel. views from a sparse
set of views that performed better than other state-of-the-
art approaches [14, 27, 29, 31, 36]. They employed two
sequential convolutional neural networks (CNNs) to esti-
mate the depth of the scene and predict the color of each
pixel. Then, they trained the network by directly minimiz-
ing the error between the synthetic view and the ground
truth image. However, due to the depth estimation-based
method they introduced, their networks still resulted in arti-
facts such as tearing and ghosting, especially in the occlud-
ed regions and non-Lambertian surfaces. Fig. 1 shows the
reconstruction results obtained by Kalantari et al. [16] and
our proposed approach on the Neurons 20× case from the
Stanford microscope light fields data [21]. The method by
Kalantari et al. [16] results in blur in the occluded region-
s, while the proposed approach produces reasonable result
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even in this challenging case.
In this paper, we propose a novel learning-based frame-

work to reconstruct high angular resolution light field from
a sparse sample of views. One of our key insight is that the
light field reconstruction can be modeled as learning-based
angular detail restoration on the 2D EPI. Due to the special
structure of the EPI, the learning-based reconstruction can
be effectively implemented on it. Unlike the depth-based
view synthesis approaches, the proposed method does not
require depth estimation.

We further indicated (see Sec. 3) that the main problem
in sparsely sampled light field reconstruction is the infor-
mation asymmetry between the spatial and angular domain,
where the high frequency portion in the angular domain is
damaged by undersampling. This information asymmetry
will cause ghosting effects when the light field is directly
unsampled or super-resolved in the angular domain [24].
To suppress the ghosting effect caused by this information
asymmetry and simultaneously take advantage of the spa-
tial and angular information, we instead propose a “blur-
restoration-deblur” framework on EPI. We first balance the
information by removing the spatial high frequency infor-
mation of the EPI. This step is implemented by convolving
the EPI with a known blur kernel. We then apply a CNN to
restore the angular detail of the EPI damaged by the under-
sampling. Finally, a non-blind deblur operation is used to
restore the spatial detail suppressed by the EPI blur.

Extensive experiments on synthetic scenes and real-
world scenes as well as microscope light field data validate
that the proposed framework significantly improves the re-
construction in the occluded regions, non-Lambertian sur-
faces and transparent regions, and it produces novel views
with higher numerical quality (4dB higher) compared to
other state-of-the-art approaches. Moreover, we demon-
strate that the reconstructed light field can be used to sub-
stantially enhance the depth estimation. The source code of
our work will be made public.

2. Related Work
The main obstacle in light field imaging is the trade-off

between spatial and angular resolution due to limited sen-
sor resolution. Super-resolution techniques to improve spa-
tial and angular resolution have been studied by many re-
searchers [5, 6, 31, 35, 12]. In this paper, we mainly focus
on approaches for improving the angular resolution of the
light field. The related work is divided into two categories:
those that use depth estimation and those that do not.

2.1. Depth image-based view synthesis

Wanner and Goldluecke [31] introduced a variational
light field spatial and angular super-resolution framework
by utilizing the estimated depth map to warp the input im-
ages to the novel views. They employed the structure ten-

sor to obtain a fast and robust local disparity estimation.
Based on Wanner and Goldluecke’s work, a certainty map
was proposed to enforce visibility constrains on the initial
estimated depth map in [22]. Zhang et al. [37] proposed a
phase-based approach for depth estimation and view syn-
thesis. However, their method was specifically designed for
a micro-baseline stereo pair, and causes artifacts in the oc-
cluded regions when extrapolating novel views. Zhang et
al. [36] described a patch-based approach for various light
field editing tasks. In their work, the input depth map is de-
composed into different depth layers and presented to the
user to achieve the editing goals. However, these depth
image-based view synthesis approaches suffer when faced
with occluded and textureless regions. In addition, they of-
ten focus on the quality of depth estimation, rather than the
synthetic views.

In recent years, some studies for maximizing the quali-
ty of synthetic views have been presented that are based on
CNNs. Flynn et al. [11] proposed a deep learning method
to synthesize novel views using a sequence of images with
wide baselines. Kalantari et al. [16] used two sequential
convolutional neural networks to model depth and color es-
timation simultaneously by minimizing the error between
synthetic views and ground truth images. However, in that
study, the network is trained using a fixed sampling pattern,
which makes it unsuitable for universal applications. In ad-
dition, the approach results in ghosting artifacts in the oc-
cluded regions and fails to handle some challenging cases.

In general, the depth image based view synthesis ap-
proaches [22, 31, 36, 37] use the estimated depth map to
warp the input images to the novel views. In contrast, the
learning-based approaches [11, 16] are designed to mini-
mize the error between the synthetic views and the ground
truth images rather than to optimize the depth map, resulting
in better reconstruction results. However, these approaches
still rely on the depth estimation; therefore, they always fail
in occluded regions, non-Lambertian surfaces and transpar-
ent regions.

2.2. Light field reconstruction without depth

For sparsely sampled light fields, a reconstruction in
Fourier domain has been investigated in some studies. Shi et
al. [26] considered light field reconstruction as an optimiza-
tion for sparsity in the continuous Fourier dimain. Their
work sampled a small number of 1D viewpoint trajectories
formed by a box and 2 diagonals to recover the full light
field. However, this method requires the light field to be
captured in a specific pattern, which limits its practical us-
es. Vagharshakyan et al. [28] utilized an adapted discrete
shearlet transform to reconstruct the light field from a s-
parsely sampled light field in EPI space. However, they as-
sumed that the densely sampled EPI was a square image,
therefore, needed large number of input views. In addition,



the reconstruction exhibited poor quality in the border re-
gions, resulting in a reduction of angular extent.

Recently, learning-based techniques have also been ex-
plored for the reconstruction without depth. Cho et al. [8]
adopted a sparse-coding-based (SC) method to reconstruct
light field using raw data. They generate image pairs using
Barycentric interpolation. Yoon et al. [35] trained a neural
network for spatial and angular super-resolution. Howev-
er, the network used every two images to generate a novel
view between them, thus it underused the potential of the
full light field. Wang et al. [30] proposed several CNN ar-
chitectures, one of which was developed for the EPI slices;
however, the network is designed for material recognition,
which is different with the EPI restoration task.

3. Problem Analysis and Formulation
For a 4D light field L(x, y, s, t), where x and y are the

spatial dimensions and s and t are the angular dimensions, a
2D slice can be acquired by gathering horizontal lines with
fixed y∗ along a constant camera coordinate t∗, denoted as
Ey∗,t∗(x, s). This 2D slice is called an epipolar plane image
(EPI). Then, the low angular resolution EPI EL is s down-
sampled version of the high angular resolution EPI EH :

EL = EH ↓, (1)

where ↓ denotes the down-sampling operation. Our task is
to find an inverse operation F that can minimize the error
between the reconstructed EPI and the original high angular
resolution EPI:

min
F
||EH − F (EL)||. (2)

For a densely sampled light field, where the disparity be-
tween the neighboring views does not exceed 1 pixel, the
angular sampling rate satisfies the Nyquist sampling cri-
terion (the detail of this deduction can be found in [24]).
One can reconstruct such a light field based on the plenoptic
function; however, for light field sampled under the Nyquist
sampling rate in the angular domain, the disparity is always
larger than 1 pixel (see Fig. 2(a)). This undersampling of
the light field destroys the high frequency detail in the angu-
lar domain, while the spatial information is complete. This
information asymmetry between the angular and spatial in-
formation causes ghosting effect in the reconstructed light
field if the angular resolution is directly upsampled (see Fig.
2(b)). The black line in the ground truth EPI (Fig. 2(e))
is continues, while the upsampled EPI (Fig. 2(b)) cannot
reconstruct the line with large disparity. Note that this in-
formation asymmetry will always occur when the disparity
between the neighboring views is larger than 1 pixel.

To ensure information symmetry between the spatial and
angular information of the EPI, one can decrease the spatial
resolution of the light field to an appropriate level. How-
ever, it is then difficult to recover the novel views with the
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Figure 2. An illustration of EPI upsampling results. (a) The input
low angular resolution EPI, where d is the disparity between the
neighboring views (4 pixels); (b) The upsampling result using an-
gular super-resolution directly cannot reconstruct an EPI with vi-
sual coherency; (c) The result after using EPI blur (on the spatial
dimension) and bicubic interpolation (on the angular dimension);
(d) The final high angular resolution EPI produced by the proposed
algorithm; and (e) The ground truth EPI.

original spatial quality, especially when a large downsam-
pling rate has to be used in the case as shown in Fig. 2
(a). Rather than decreasing the spatial resolution of the light
field, we extract the low frequency information by convolv-
ing the EPI with a 1D blur kernel in the spatial domain. Due
to the coupling relationship between the spatial and angular
domain [24], this step equals an anti-aliasing processing in
the angular domain. Because the kernel is predesigned, the
spatial detail can be easily recovered by using a non-blind
deblur operation. Fig. 2(c) shows the blurred and upsam-
pled result of the sparsely sampled EPI in Fig. 2(a). We
now reformulate the reconstruction of EPI EL as follows:

min
f
||EH −Dκf((EL ∗ κ) ↑)||, (3)

where ∗ is the convolution operator, κ is the blur kernel, ↑
is a bicubic interpolation operation that upsamples the EPI
to the desired angular resolution, f represents an operation
that recovers the high frequency detail in the angular do-
main, and Dκ is a non-blind deblur operator that uses the
kernel κ to recover the spatial detail of the EPI suppressed
by the EPI blur. In our paper, we model the operation f with
a CNN to learn a mapping between the blurred low angular
resolution EPI and the blurred high angular resolution EPI.

4. Proposed Framework

4.1. Overview

The EPI is the building block of a light field that contains
both the angular and spatial information. We take advan-
tage of this characteristic to model the reconstruction of the
sparsely sampled light field as the learning-based angular
information restoration on EPI (Eq. 3). An overview of our
proposed framework is shown in Fig. 3.
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Figure 3. The proposed learning-based framework for light field
reconstruction on EPI.

We first extract the spatial low frequency information of
the EPI using EPI blur. Then we upsample it to the desired
angular resolution using bicubic interpolation in the angular
domain (see Fig. 3(a)). Then, we apply a CNN to restore
the detail of the EPI in the angular domain (see Fig. 3(b)).
The network architecture is similar to that in [9]. The main
difference is that we apply a residual-learning method to
predict only the angular detail of the EPI. The network de-
tail is presented in Sec. 4.3. Finally, the spatial detail of the
EPI is recovered through a non-blind deblur operation [18]
(see Fig. 3(c)), and the output EPIs are applied to recon-
struct the final high angular resolution light field. It should
be noted that the CNN is trained to restore the angular de-
tail that is damaged by the undersampling of the light field
rather than the spatial detail suppressed by the EPI blur. An
alternative approach is to model the deblur operation into
the CNN; however, using that approach, the network will
inevitably need to be deeper and will be slower to converge,
making it more difficult to produce good results. Compar-
atively, the non-blind deblur is much more suitable to the
task because the kernel is known.

To reconstruct the full light field using the sparsely sam-
pled light field, the EPIs Ey∗,t∗(x, s) and Ex∗,s∗(y, t) from
the input views are applied to reconstruct an intermediate
light field. Then, EPIs from the novel views are used to
generate the final light field.

4.2. Low frequency extraction based on EPI blur

To extract the low frequency of the EPI from only the
spatial domain, we define the blur kernel in 1D space rather
than defining a 2D image blur kernel. The following candi-
dates are considered when extracting the low frequency part
of the EPIs: the sinc function, the spatial representation of
a Butterworth low pass filter of order 2 and the Gaussian
function. The spatial representations of the filters are as fol-
lows:

κs(x) = c1sinc(x/(2|σ|)),
κb(x) = c2e

−|x/σ|(cos(|x/σ|) + sin(|x/σ|)),

κg(x) = c3e
−x2/(2σ2),

(4)

where c1, c2 and c3 are scale parameters, and σ is a shape
parameter. In our paper, the kernels are discretized at
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Figure 4. The proposed detail restoration network is composed of
three layers. The first and the second layers are followed by a
rectified linear unit (ReLU). The final output of the network is the
sum of the predicted residual (detail) and the input.

the integer coordinate and limited to a finite window, i.e.,
x ∈ [−4σ, 4σ]. The kernel size is determined by the largest
disparity (e.g., for the light field with largest disparity of 4
pixels, the shape parameter σ = 1.5, and the kernel size is
13). The scale parameters are used to normalize the kernels.

We evaluate these three kernels based on the following
two principles: the final deblurred result must show visual
coherency with the ground truth EPI, and the mean square
error (MSE) between the blurred low angular resolution EPI
and the blurred ground truth EPI is as minimal as possible:

min
κ

1

n

n∑
i=1

||(E(i)
L ∗ κ) ↑ −E(i) ∗ κ||2, (5)

where i is the index of the EPIs, n is the number of EPIs,
EL is the low angular resolution EPIs, and E is the ground
truth high angular resolution EPIs. We evaluate the kernel-
s on the Stanford Light Field Acheive [4], and the errors
between the processed (blurred and upsampled) EPIs and
the blurred ground truth EPIs are 0.153, 0.089 and 0.061
for the sinc, Butterworth and Gaussian kernels, respectively.
The sinc function represents an ideal low pass filter in the
spatial domain, and the low frequencies can pass through
the filter without distortion. However, this ideal low pass
filter causes ringing artifacts in the EPIs. The Butterworth
kernel generates imperceptible ringing artifacts, while the
Gaussian ensures that no ringing artifacts exist. Based on
this observation and the numerical evaluation, the Gaussian
function is selected to be the kernel for the EPI blur.

4.3. Detail restoration based on CNN

For CNN based image restoration, Dong et al. [9] pro-
posed a network for single image super-resolution named
SRCNN, in which a high-resolution image is predicted from
a given low-resolution image. Kim et al. [17] improved on
that work by using a residual network with a deeper struc-
ture. Inspired by those pioneers, we design a residual net-
work with three convolution layers to restore the angular
detail of the EPIs.

4.3.1 CNN architecture

The architecture of the detail restoration network is outlined
in Fig. 4. Consider an EPI that is convolved with the blur



kernel and up-sampled to the desired angular resolution, de-
noted as E′L for short, the desired output EPI f(E′L) is then
the sum of the input E′L and the predicted residualR(E′L):

f(E′L) = E′L +R(E′L). (6)

The network for the residual prediction comprises three
convolution layers. The first layer contains 64 filters of
size 1 × 9 × 9, where each filter operates on 9 × 9 spa-
tial region across 64 channels (feature maps) and used for
feature extraction. The second layer contains 32 filters of
size 64× 5× 5 used for non-linear mapping. The last layer
contains 1 filter of size 32 × 5 × 5 used for detail recon-
struction. Both the first and the second layers are followed
by a rectified linear unit (ReLU). Due to the limited angular
information of the light field used as the training dataset, we
pad the data with zeros before every convolution operations
to maintain the input and output at the same size.

We apply this residual learning method for the follow-
ing reasons. First, the undersampling in the angular domain
damages the high frequency portion (detail) of the EPIs;
thus, only that detail needs to be restored. Second, extract-
ing this detail prevents the network from having to consider
the low frequency part, which would be a waste of time and
result in less accuracy.

4.3.2 Training detail

The desired residuals are R = E′ − E′L, where E′ are the
blurred ground truth EPIs and E′L are the blurred and inter-
polated low angular resolution EPIs. Our goal is to mini-
mize the mean squared error 1

2 ||E
′ − f(E′L)||2. However,

due to the residual network we use, the loss function is now
formulated as follows:

L =
1

n

n∑
i=1

||R(i) −R(E′(i)L )||2, (7)

where n is the number of training EPIs. The output of the
network R(E′L) represents the restored detail, which must
be added back to the input EPI E′L to obtain the final high
angular resolution EPI f(E′L).

We use the Stanford Light Field Archive [4] as the train-
ing data. The blurred ground truth EPIs are decomposed to
sub-EPIs of size 17 × 17 with stride 14. To avoid overfit-
ting, we adopted data augmentation techniques [10, 19] that
include flipping, downsampling the spatial resolution of the
light field as well as adding Gaussian noise. To avoid the
limitations of a fixed angular up-sampling factor, we use a
scale augmentation technique. Specifically, we downsam-
ple some EPIs with a small angular extent by factor 4 and
the desired output EPIs by factor 2, then upsample them to
the original resolution. The network is trained by using the
datasets downsampled by both factor 2 and factor 4. We use
the cascade of the network for the EPIs that are required to

be up-sampled by factor 4. In practice, we extract more than
8×106 examples which is sufficient for the training. We se-
lect the mini-batches of size 64 as a trade-off between speed
and convergence.

In the paper, we followed the conventional methods of
image super-resolution to transform the EPIs into YCbCr s-
pace: only the Y channel (i.e., the luminance channel) is ap-
plied to the network. This is because the other two channels
are blurrier than the Y channel and, thus, have less useful in
the restoration [9].

To improve the convergence speed, we adjust the learn-
ing rate consistent with the increasing of the training iter-
ation. The number of training iterations is 8 × 105 times.
The learning rate is set to 0.01 initially and decreased by
a factor of 10 every 0.25 × 105 iterations. When the train-
ing iterations are 5.0×105 , the learning rate is decreased to
0.0001 in two reduction steps. We initialize the filter weight
of each layer using a Gaussian distribution with zero mean
and standard deviation 1e−3. The momentum parameter is
set to 0.9. Training takes approximately 12 hours on G-
PU GTX 960 (Intel CPU E3-1231 running at 3.40GHz with
32GB of memory). The training model is implemented us-
ing the Caffe package [15].

5. Experiment Results and Applications
In this section, we evaluate the proposed “blur-

restoration-deblur” interpolation framework compared with
the approach proposed by Kalantari et al. [16] and the typ-
ical depth-based approaches on several datasets including
real-world scenes, microscope light field data and synthetic
scenes. For the typical depth-based approaches, we first use
current state-of-the-art approaches (Wang et al. [29], Jeon et
al. [14]) to estimate the depth, then warp the input images to
the novel view and blend by weighting the warped images
[7]. We also evaluate each steps in the framework includ-
ing: the performance without the “blur-deblur” steps; the
residual-learning network by replacing the network with the
SRCNN [9] and the sparse-coding-based method (SC) [34]
in the detail restoration part. The quality of the synthetic
views is measured by the PSNR against the ground truth
image. In addition, we demonstrate how reconstructed light
field can be applied to enhance the depth estimation1.

5.1. Real-world scenes

We evaluate the proposed approach using 30 test scenes
provided by Kalantari et al. [16] that were captured with a
Lytro Illum camera (“30 scenes” for short) as well as two
representative scenes, Reflective 29 and Occlusion 18, from
the Stanford Lytro Light Field Achieve [3]. We use 3 × 3
views to reconstruct 7× 7 light fields.

1More results of reconstructed light fields (figures and SSIM evalua-
tion) and depth enhancement can be found in the supplementary file.
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Figure 5. Comparison of the proposed approach against other methods on the real-world scenes. The results show the ground truth images,
error maps of the synthetic results in the Y channel, close-up versions of the image portions in the blue and yellow boxes, and the EPIs
located at the red line shown in the ground truth view. The EPIs are upsampled to an appropriate scale in the angular domain for better
viewing. The lowest image in each block shows a close-up of the portion of the EPIs in the red box.

Table 1 lists the numerical results on the real-world
datasets. The PSNR values are averaged over the 30 scenes.
The CNNs in the approach by Kalantari et al. [16] are de-
signed to minimizing the error between the synthetic views
and the ground truth views. Therefore, they achieve better
performance than other depth-based method among those
common scenes. However, their networks were specifical-
ly trained for Lambertian regions, thus tend to fail in the
reflective surface in the Reflective 29 case. Among these
real-world scenes, our proposed framework is significantly
better than other approaches. In addition, due to the in-
formation asymmetry, our proposed approach without the
“blur-deblur” framework (denoted as ”Ours/CNN only” in
the table) produces lower quality light fields than those us-
ing the complete framework.

Fig. 5 depicts some of the results such as the Leaves from
the 30 scenes, and Reflective 29 and Occlusion 16 scenes in
the Stanford Lytro Light Field Achieve. The Leaves case
includes some leaves with complex structure in front of a
street. The case is challenging due to the overexposure
of the sky and the occlusion around the leaves shown in
the blue box. The results by Wang et al. [29] and Jeon et
al. [14] show blurring artifacts around the leaves, and the

30 scenes Reflective29 Occlusion16
Wang et al. [29] 33.03 28.97 25.94
Jeon et al. [14] 34.42 40.27 32.10
Kalantari [16] 37.78 37.70 32.24
Ours/CNN only 37.15 44.84 35.89
Our proposed 41.02 46.10 38.86

Table 1. Quantitative results (PSNR) of reconstructed light fields
on the real-world scenes [16, 3].

result by Kalantari et al. [16] contains ghosting artifacts.
The Reflective 29 case is a challenge scene because of the
reflective surfaces of the pot and the kettle. The result by
Wang shows blurring artifacts around the pot and the ket-
tle. The approaches by Jeon et al. [14] and Kalantari et
al. [16] produce better results, but the reconstructed light
fields show discontinuities in terms of the EPIs. The Oc-
clusion 16 case contains complicated occlusions that are
challenging for view synthesis; consequently, their result-
s are quite blurry around the occluded regions such as the
branches and leaves. As demonstrated in the error maps and
the close-up images of the results, the proposed approach
achieves a high performance in terms of the visual coheren-
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Figure 6. Comparison of the proposed approach against other methods on the microscope light field datasets. The results show the ground
truth or reference images, synthetic results, close-up versions in the blue and yellow boxes, and the EPIs located at the red line shown in
the ground truth view.

Neurons 20× Neurons 40×
Wang et al. [29] 17.45 13.21
Jeon et al. [14] 23.02 23.07
Kalantari et al. [16] 20.94 19.02
Our proposed 29.34 32.47

Table 2. Quantitative results (PSNR) of reconstructed light fields
on microscope light field datasets [21].

cy of both the synthetic views and the EPIs.

5.2. Microscope light field dataset

In this subsection, the Stanford Light Field microscope
datasets [21] and the camera array based light field micro-
scope datasets provided by Lin et al. [23] are tested. These
datasets include challenge light fields such as complicated
occlusion relations and translucency. The numerical result-
s are tabulated in Table 2, and the reconstructed views are
shown in Fig. 6. We reconstruct 7×7 light fields using 3×3
views in the Neurons 40× case, and 5× 5 light fields using
3 × 3 views in the Neurons 40× case. For the Worm case,
5× 5 views are used to produce 9× 9 light fields2.

The Neurons 40× case shows a Golgi-stained slice of rat
brain, which contains complex occlusions. The result by
Wang et al. [29] is quite blurry due to the errors in the es-

2The quantitative evaluation is not performed on the Worm case because
all the ground truth views are used as input. In the figure, we show a nearest
view as the reference for the reconstructed view.

timated depth. Although the result by Jeon et al. [14] has
a higher PSNR value, it fails to estimate the depth of the
scene, which is visible in the EPI. The result produced by
Kalantari et al. [16] has a higher quality in terms of the vi-
sual coherency. However, the result contains blurring and
tearing artifacts in the occluded regions. Besides, the pro-
posed approach shows denoising effect which can be seen in
the close-up version. The Worm case is more simply struc-
tured but contains transparent objects such as the head of
the worm. The depth-based approaches are not able to es-
timate accurate depth maps in those regions, which results
in tearing and ghosting artifacts. Among these challenging
cases, our approach produces plausible results in both the
occluded and translucent regions.

5.3. Synthetic scenes

We use the synthetic light field data from the HCI
datasets [32] in which the spatial resolution is the same as
the original inputs (768 × 768). The angular resolution of
the output light field is set to 9× 9 for comparison with the
ground truth images, although we are able to produce light
field of denser views. We use input light fields with differ-
ent degrees of sparsity (3× 3 and 5× 5) to evaluate the per-
formance of the proposed framework for different upsam-
pling scale factors. Table 3 shows a quantitative evaluation
of the proposed approach on the synthetic dataset compared
with other methods. The approach by Kalantari et al. [16]



Buddha Mona
Input 3× 3 5× 5 3× 3 5× 5

Wang et al. [29] 33.41 44.15 30.74 43.69
Jeon et al. [14] 41.19 44.06 40.95 42.67
Kalantari et al. [16] 34.05 34.51 32.53 32.59
Ours/SC [34] 41.67 41.79 42.39 44.40
Ours/SRCNN [9] 41.50 42.45 42.64 43.86
Our proposed 43.20 46.42 44.37 51.07

Table 3. Quantitative results (PSNR) of reconstructed light fields
on the synthetic scenes of the HCI datasets [32]. The SC [34] and
SRCNN [9] are applied to the proposed framework by replacing
the proposed residual learning method and are denoted as ours/SC
and ours/SRCNN, respectively.

produces lower quality than other depth-based approaches,
because their CNNs are specifically trained on real-world
scenes. The proposed approach achieves the highest PSNR
values compared to the depth based methods. Moreover, the
residual learning method produces better result than the SC
and SRCNN approaches under the same framework.

5.4. Application for depth enhancement

In this section, we demonstrate that the proposed light
field reconstruction framework can be used to enhance
depth estimation. Table 4 gives the RMSE values of the
depth estimation results from using the 3 × 3 inputs, the
reconstructed 9 × 9 light fields produced by Kalantari et
al. [16], our reconstructed 9× 9 light fields and the ground
truth 9×9 light fields on the HCI datasets [32]. Fig. 7 shows
the depth estimation results on the Cars, Reflective 29, Oc-
clusion 16, and the Flowers and plants 12 cases. We use the
approach by Wang et al. [29] to estimate the depth of the
scenes. The results show that our reconstructed light fields
are able to produce more accurate depth maps that better p-
reserve edge information than those produced by Kalantari
et al. [16], e.g., the reflective surface of the red pan in the
Reflective 29 and the branches in front of the left car in the
Cars. Moreover, the enhanced depth maps are close to the
ones produced by using the ground truth light fields.

6. Limitation and Discussion

The proposed framework uses EPI blur to extract the low
frequency portion of the EPI in the spatial domain, where
the size of the blur kernel is determined by the largest dis-
parity between the input neighboring views. The non-blind
deblur is not able to recover high quality EPIs when the k-
ernel size is too large, and the maximum disparity we can
handle is 5 pixels. For spatial aliasing input, our method
cannot remove such artifacts but can give novel views with
similar quality as those of the input. In addition, at least 3
views should be used in each angular dimension to provide
enough information for the bicubic interpolation.

Cars Reflective 29 Occlusions 16 Plants 12

Center views

Depth estimation using the input 3×3 views

Depth estimation using the reconstructed 7×7 views by Kalantari et al. [16]

Depth estimation using our reconstructed 7×7 views

Depth estimation using the ground truth 7×7 views

Figure 7. Depth estimation results using the reconstructed light
fields. The arrows in the third row mark the depth errors caused
by the artifacts of the reconstructed light fields.

Buddha Mona Horses
Input 3× 3 views 0.2926 0.2541 0.3757
Kalantari et al. [16] 0.1576 0.0829 0.1212
Ours 0.0401 0.0517 0.0426
GT light fields 0.0393 0.0529 0.0383

Table 4. RMSE values of the estimated depth using the approach
by Wang et al. [29] on HCI datasets.

7. Conclusion

We have presented a novel learning-based framework
for light field reconstruction on EPI. To avoid the ghost-
ing effects caused by the information asymmetry, the spa-
tial low frequency information of the EPI is extracted via
EPI blur and used as input to the network to recover the
angular detail. The non-blind deblur operation is used to re-
store the spatial detail that suppressed by the EPI blur. The
experimental results demonstrate that the proposed frame-
work outperforms state-of-the-art approaches in occluded
and transparent regions and on non-Lambertian surfaces
such as challenging microscope light field datasets.
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