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Fig. 1. Our method is able to synthesize high-resolution, photo-realistic and view-consistent head images, achieving fine-grained control over head poses and
facial expressions.

The problem of modeling an animatable 3D human head avatar under light-
weight setups is of significant importance but has not been well solved.
Existing 3D representations either perform well in the realism of portrait im-
ages synthesis or the accuracy of expression control, but not both. To address
the problem, we introduce a novel hybrid explicit-implicit 3D representation,
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Facial Model Conditioned Neural Radiance Field, which integrates the ex-
pressiveness of NeRF and the prior information from the parametric template.
At the core of our representation, a synthetic-renderings-based condition
method is proposed to fuse the prior information from the parametric model
into the implicit field without constraining its topological flexibility. Besides,
based on the hybrid representation, we properly overcome the inconsistent
shape issue presented in existing methods and improve the animation sta-
bility. Moreover, by adopting an overall GAN-based architecture using an
image-to-image translation network, we achieve high-resolution, realistic
and view-consistent synthesis of dynamic head appearance. Experiments
demonstrate that our method can achieve state-of-the-art performance for
3D head avatar animation compared with previous methods.

CCS Concepts: • Computing methodologies → Image-based rendering.
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1 INTRODUCTION
Animatable 3D human head avatar modeling is of great significance
in many applications such as VR/AR games and telepresence. There
are two key factors for a lifelike virtual personal character: the accu-
racy of facial expression control and the realism of portrait images
synthesis. Though exiting solutions [Lombardi et al. 2018, 2021; Ma
et al. 2021] are able to reconstruct high-quality dynamic human
heads, they typically depend on complicated dense-view capture
systems and even rely on hundreds of cameras. By leveraging the
learning-based techniques, researchers have shifted interest to ex-
plore the possibility of automatically modeling human head avatar,
with accurate controllability and high-fidelity appearance, under
light-weight setup.
Firstly, to establish a controllable personalized head character,

the most straightforward way is to directly learn a global parameter
conditioned neural head avatar from image sequences, but such
method [Gafni et al. 2021] limits the generalization ability in expres-
sion control. To improve control robustness, other works [Grassal
et al. 2022; Zheng et al. 2022] attempt to leverage parametric tem-
plates [Li et al. 2017] to help regulate the avatar modeling during
the training stage. However, the explicit surface prior from the para-
metric model constrains the expressive power for complex-topology
parts (i.e. glasses).
Secondly, for high-fidelity human head avatar modeling, recent

implicit-surface-based methods [Grassal et al. 2022; Yenamandra
et al. 2021; Zheng et al. 2022] recover more texture details compared
with conventional methods [Cao et al. 2014; Li et al. 2017; Wang
et al. 2022b; Yang et al. 2020] with limited-resolution texture repre-
sentation. Nevertheless, the quality of the recovered appearance is
still far from satisfactory. Built on the expressive neural radiance
field (NeRF) [Mildenhall et al. 2020], Nerface [Gafni et al. 2021] is
able to generate more promising dynamic appearance results. How-
ever, based on the MLP backbone, it is trained in an auto-decoding
fashion and tends to overfit training sequences, leading to the obvi-
ous inconsistent shape across different frames and unnatural head
shaking in the test phase.
Combining the expressiveness of NeRF and the prior informa-

tion from the parametric template is a promising way for achieving
fine-grained expression control and realistic portrait synthesis. Re-
cent work [Athar et al. 2022] establishes a deformable-mesh-guided
dynamic NeRF for head avatar modeling. However, the prominent
challenge for the coupling of geometry models and NeRF comes
from the difficulty in establishing reliable dense correspondences be-
tween the real-world subject and the fitted parametric template. Due
to the limited expressiveness of the morphable model, it is hard for
the deformed mesh to perfectly align with the real-world head with
high diversity in terms of geometry and topology. Resulted from
the obvious misalignment, the spatial sampling points in the neural
radiance field tend to establish ambiguous correspondences with the
mesh surface, leading to blurry or unstable rendering performance.

In this paper, we introduce a novel Parametric Model-Conditioned
Neural Radiance Field for Human Head Avatar. Inspired by the ef-
fective rendering-to-video translation architecture adopted by [Kim

et al. 2018], we extend the synthetic-rendering-based condition for
3D head control, by integrating it with triplane-based neural volu-
metric representation [Chan et al. 2022]. The dynamic head charac-
ter is conditioned by the axis-aligned feature planes generated by
the orthogonal renderings of the textured fitted parametric model in
the canonical space. We leverage a powerful convolutional network
to learn the reasonable correspondences between the canonical syn-
thetic renderings and the observed head appearance, hence avoiding
the ambiguous correspondences determined by the Euclidean dis-
tance. On the one hand, such a synthetic-rendering-based condition
introduces the prior of the fully-controllable 3D facial model into
the neural representation to achieve fine-grained and consistent
expression control. On the other hand, orthogonal renderings can
supply rough 3D descriptions and avoid excessive restriction from
the coarse geometry of the model mesh, so that our head avatar
is capable of describing complex topology structure. Considering
that the dynamic content mainly comes from facial expressions, we
utilize a facial parametric model rather than a full-head model in
practice, leaving only the facial region benefiting from the model‘s
prior.
Moreover, while retaining the powerful appearance expressive-

ness of NeRF [Mildenhall et al. 2020], our method also overcomes the
inconsistent shape issue that commonly occurs in NeRF-based mod-
eling methods [Gafni et al. 2021]. Based on our synthetic-renderings-
based orthogonal-plane representation, we utilize learnable embed-
dings to modulate the plane feature generators rather than condition
the MLP decoder in an auto-decoding fashion like Nerface [Gafni
et al. 2021]. By modulating the convolutional kernels and normaliz-
ing the feature generation, the embeddings are able to regulate the
whole feature volume to avoid overfitting, leading to the consistent
head shape in the animation. Our experiments prove that, with per-
frame embeddings modulating on the convolutional generators, the
shape consistency and the animation stability of our head avatar
are significantly improved.
Finally, our method inherits the advantage of NeRF [Mildenhall

et al. 2020], which intrinsically supports differentiable rendering
and maintains multiview consistency. Thanks to this strength, we
further integrate the NeRF-based volume rendering with the neural
rendering, and optimize the whole architecture end-to-end with
image observations to recover facial details. Specifically, by lever-
aging the effective image-to-image translation network commonly
used in researches of portrait video synthesis [Chen et al. 2020; Kim
et al. 2018; Thies et al. 2019; Xu et al. 2020; Zakharov et al. 2019],
we translate the rendered 3D-aware feature map into RGB images.
Training the overall network in an adversarial manner, our solution
firstly achieves high-resolution and view-consistent photo-realistic
synthesis for 3D head avatar.
Given monocular or sparse-views videos, after fitting per frame

3D facial models with an off-the-shelf tracker, our approach is able
to learn a high-fidelity and view-consistent personalized 3D head
avatar, including hair, accessories and torso, under full control of
head poses and facial expressions. Meanwhile, we optimize a linear
blend skinning (LBS) weight field as well, that decouples the motions
of the head and the torso via a backward warping. During test time,
given a single-view driving video, pose and expression parameters
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Fig. 2. The overview of our parametric-model-based Neural Head Avatar.

are extracted to deform the facial model, and our method can faith-
fully recover the entire head appearance under novel expressions,
poses, and viewpoints.
In summary, the main contributions of this paper include:

• We propose a novel facial model conditioned NeRF for per-
sonalized 3D head avatar, which is built on an orthogonal
synthetic-renderings based feature volume. Our representa-
tion enables flexible topology and accurate control over the
head motion and facial expressions.

• Benefiting from our hybrid representation, we develop a new
strategy of modulating generators with conditional embed-
dings to handle the inconsistent shape issue presented in
existing NeRF-based avatar modeling methods and signifi-
cantly improve the animation stability.

• Wefirstly achieve high-resolution realistic and view-consistent
synthesis of dynamic head appearance, by adopting an over-
all GAN-based architecture combining our efficient avatar
representation with an image-to-image translation module.

• Besides the learning head avatar from monocular videos, we
also present head avatar modeling from multiview videos
(using 6 cameras), and experiments demonstrate the superior
performance of our approach compared with other modified
SOTA methods.

2 RELATED WORKS
Our method draws inspirations from explicit parametrical facial
model, synthetic-renderings-based 2D facial avatar and implicit 3D
head avatar. So we divide this section into three parts.

2.1 Explicit Parametrical Facial Model
Parametric modeling of 3D face has been intensively studied in the
past two decades. In the form of explicit meshes, parametric face
models are compact, controllable, and easy to be animated. The
pioneer work [Blanz and Vetter 1999] builds 3D morphable model
to represent facial shape, expression, and appearances. Recently, the
parametric face models become more expressive by exploiting more
powerful modeling techniques, including multi-linear or nonlinear

models [Brunton et al. 2014; Li et al. 2010, 2020; Neumann et al.
2013; Tewari et al. 2018; Tran et al. 2019; Tran and Liu 2018; Vlasic
et al. 2006] and the articulated control of expression [Li et al. 2017].
To model detailed deformations of expression, recent state-of-the-
art methods [Danecek et al. 2022; Feng et al. 2021a] further learn
additional displacement maps with the conditions of image inputs.
Moreover, learning-based generative models such as GAN [Karras
et al. 2017] or styleGAN [Karras et al. 2020; Karras et al. 2020a] are
also used in existing models [Cheng et al. 2019; Gecer et al. 2021;
Lattas et al. 2021; Luo et al. 2021; Nagano et al. 2019, 2018; Wang
et al. 2022b] to enhance the accuracy of facial texture or geometry
modeling. Despite the remarkable progress, all these parametric
models can only capture the relatively coarse geometry and appear-
ance of the facial region with the explicit mesh representations,
which limits the realism of those reconstruction and animation ap-
proaches [cao 2016; Grassal et al. 2022; Hu et al. 2017] built upon
them. Instead of solely relying on explicit face models, our approach
proposes a controllable hybrid explicit-implicit representation for
photo-realistic rendering of 3D face.

2.2 Synthetic-Renderings-based 2D Facial Avatar
To utilize the explicit facial model to represent the entire dynamic hu-
man head, somemethods [Doukas et al. 2021; Kim et al. 2018; Koujan
et al. 2020; Thies et al. 2020, 2019] combine classical rendering and
learned image synthesis to establish 2D avatar based on the monoc-
ular video. Deep Video Portraits [Kim et al. 2018] presented impres-
sive full head reenactment and photo-realistic image results based
on an image2image translation framework. Head2Head [Doukas
et al. 2021; Koujan et al. 2020] further improved the temporal co-
herency with a sequential, video-based rendering network. Instead
of using the raw texture of the fitted coarse facial model, Deferred
Neural Render [Thies et al. 2020, 2019] extended the idea by render-
ing the local feature embedded on the mesh surface. Though the
rendering-to-video architecture shows an impressive performance
in video portrait synthesis, it does not establish 3D representation
for the full-head appearance.
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2.3 Implicit 3D Head Avatar
In the past three years, it has been an emerging trend to model
3D scenes and objects in an implicit fashion with the success of
implicit representations [Mildenhall et al. 2020; Yariv et al. 2020],
based on which some works [Chan et al. 2022; Kellnhofer et al.
2021; Mihajlovic et al. 2022; Wang et al. 2022a] have explored to
reconstruct high-fidelity view-consistent 3D appearance for static
portraits or [Park et al. 2021a,b] model the dynamic scene with head
movements. As for animatable personalized head character, many
methods [Athar et al. 2022; Gafni et al. 2021; Grassal et al. 2022; Lom-
bardi et al. 2019, 2021; Wang et al. 2021; Zheng et al. 2022] attempted
to build implicit representation-based personalized full-head avatar.
Based on dense multiview capture systems, some researches [Cao
et al. 2021; Lombardi et al. 2019, 2021; Wang et al. 2021] are able
to generate facial avatars with impressive subtle details and highly
flexible controllability for immersive metric-telepresence. Though
the recent work [Cao et al. 2022] supports creating authentic avatars
from a phone scan, it relies on a prior model that is pretrained in
a large-scale multiview-videos dataset captured in a complicated
systems. High cost in data acquisition limited the broad applications.
Under light-weight camera settings, based on implicit surface repre-
sentation, IMAvatar [Zheng et al. 2022] improved generalization to
novel expressions by incorporating skinning fields within an implicit
morphing-based model, but showed blurry unsatisfying appearance
performance. Nerface [Gafni et al. 2021] showed state-of-the-art
reenactment results with a parameter-controlled neural radiance
field, but struggled to extrapolate to unseen expressions. Recently,
RigNeRF [Athar et al. 2022] proposed to maintain a canonical neural
radiance field with a backward deformation field guided by paramet-
ric model mesh, but suffers from the ambiguous correspondences
determined by the Euclidean distance. Besides, for NeRF-based head
avatar modeling methods [Gafni et al. 2021; Guo et al. 2021; Hong
et al. 2022], there is a tendency to generate frame-wise inconsis-
tent shape. The problem is originated from the unavoidable noise
in the estimation of expressions and head poses, thus the similar
input expressions may correspond to slightly-different observed
appearances, causing unstable canonical shape recovery. Skillfully
incorporating the synthetic renderings of parametric model into
neural radiance field, our approach achieves both expressive ap-
pearance and robust full-head control, and further addresses the
inconsistent shape by modulating feature generation with learnable
embeddings.

3 OVERVIEW
The overview of our proposed method is illustrated in Fig. 2. Given
the monocular or sparse-view videos, we estimate per-frame fa-
cial parametric modelMt from image sequences I𝑡 , 𝑡 = 1, . . . ,𝑇 . Our
method conditions the NeRF on the orthogonal synthetic renderings
of the model to describe the expression-related head appearance
in the canonical space 𝐻𝐶 , which supports arbitrary topology and
precise expressions control. Besides, per-frame learnable embed-
dings are utilized to modulate plane feature generation to address
expression-shape coupling issue (Sec. 4.1). Based on the learned LBS
weight field, the canonical appearance volume 𝐻𝐶 is warped into
the observed space 𝐻 using the estimated head pose, resulting in

Fig. 3. Parametric model conditioned Volumetric Representation for canon-
ical head appearance.

the decoupled motions of the head and the body (Sec. 4.2). With an
image-to-image translation network to transferring the volumetri-
cally rendered 2D feature maps to final RGB images, our method
achieves high-resolution, photo-realistic and view-consistent por-
trait image synthesis (Sec. 4.3). The overall framework is trained in
an adversarial manner with image observations and the established
head avatar can be applied for training sequence 4D reconstruction
or novel full head reenactment (Sec. 4.4).

3.1 Recap: Nerface
Nerface [Gafni et al. 2021] firstly extends NeRF [Mildenhall et al.
2020] to describe expression-related dynamic head appearance. Based
on the classical backbone of 8 fully-connected layers, Nerface addi-
tionally inputs low dimensional expressions of the morphable model
to condition the neural scene representation network for dynami-
cally changing content. By employing the estimated head pose to
transform the rays into the canonical space shared by all frames,
the head canonical appearance volume 𝐻𝐶 can be formulated as:

𝐻𝐶 (xc, 𝛾t, 𝛿t) = (c, 𝜎) (1)

where the implicit function maps the position in canonical space xc
to density𝜎 and color feature c, under the control of facial expression
parameters 𝛿𝑡 , as well as per-frame embeddings 𝛾𝑡 to compensate
for missing tracking information.

Nerface relies on global expression blendshape parameters to rep-
resent diverse expression-related appearances. However, by simply
learning the mapping from the global conditional vectors to appear-
ances with only a short video sequence, it is easy to be overfit. Hence,
though Nerface is good at faithfully reconstructing the training se-
quences, without the awareness of the underlying 3D structure of
human face, it struggles to generalize to unseen expressions.
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Fig. 4. The architecture of orthogonal plane feature generator network.

Fig. 5. We show the novel viewpoint synthesis results of monocular-video-
based avatars. By introducing 3D prior into NeRF, our approach improves
the robustness of image synthesis under large rotations

4 METHOD

4.1 Parametric Model-conditioned NeRF
To introduce the facial structure prior into NeRF [Mildenhall et al.
2020], we propose Parametric Face Model-Conditioned Neural Radi-
ance Field. Our definition of 𝐻𝐶 is reformulated as:

𝐻𝐶 (xc, 𝑀𝑡 , 𝛾t, pt) = (c, 𝜎) (2)

where we utilize the tracked deformed mesh model𝑀𝑡 in zero pose
to condition the implicit function, as well as the head pose pt to
describe the pose-related non-rigid deformation.

4.1.1 Synthetic-Renderings based Feature Volume. Fig. 3 illustrates
the architecture of our NeRF-based representation. The head avatar,
embedded with a neural network, is conditioned by model-related
local features rather than a global vector for better generalization
and precision. Specifically, the orthogonal synthetic renderings of
the facial model are leveraged to generate the feature volume for
the canonical head appearance.
We orthogonally render the 3D facial model in zero pose and

integrate the renderings similar to tri-plane-based neural represen-
tation [Chan et al. 2022]. Considering the special structure of the
human head, we abandon the horizontal plane and utilize the front-
view and two side-views planes to characterize the head avatar in
the canonical space. Instead of sharing one StyleGAN-based back-
bone to generate all the feature planes, our method utilizes two
separate 2D generators to output feature maps individually 1. It’s
1Removing texture map is also feasible for person-specific avatar modeling, but we
empirically find that adding texture renderings can accelerate convergence.

Fig. 6. Comparison of the two different conditional embeddings. Different
from conditioning the learnable embeddings in an auto-decoding fashion
(marked as ①), we utilize them to modulate the generators of the orthogonal
plane features (marked as ②) and prevent embeddings from overfitting to
the training dataset. The middle column shows the canonical appearance
of the avatar. By only changing the expression (the rightmost column), we
illustrate the corresponding rendered appearance and the error map of the
generated mask between target cases and the base case.

also feasible to condition one StyleGAN-based backbone with syn-
thetic renderings to generate all feature planes, but we empirically
found that utilizing two separate 2D generators individually con-
tributes to accelerate convergence. As shown in Fig. 4, the synthetic
renderings are introduced to the generators to condition the plane
feature generation in an explicit manner, for achieving fine-grained
controllability. With convolutional encoders extracting image fea-
tures from the renderings, the extracted multi-resolution features
are injected into the generators for spatial-wise feature fusion. In
practice, we generate the front-view plane feature 𝐹𝑓 𝑟𝑜𝑛𝑡 based on
front-view orthogonal renderings and leverage both left- and right-
view renderings to get the side-view plane feature 𝐹𝑠𝑖𝑑𝑒 . Practically,
the deformed mesh𝑀𝑡 is rendered as a normal map, a texture map,
and a mask map in each view. For the experiments reported in this
work, each generator produces a 128 × 128 × 64 feature image.

Based on the generated plane feature images, 𝐹𝑓 𝑟𝑜𝑛𝑡 and 𝐹𝑠𝑖𝑑𝑒 ,
for any 3D point in the canonical space, we retrieve its feature
vectors via orthogonal projection and bilinear interpolation. All
the sampled feature vectors, as well as the positional encoding
vector of the coordinate, are concatenated into the point feature
f which is fed into an additional lightweight MLP module with
two hidden layers of 128 units. Finally, a scalar density 𝜎 and a
64-channel color feature c are predicted for the query point. Indeed,
the combination of orthogonal plane features and light-weight MLP
makes the burden of scene representation learning fall on the plane
feature generation. Hence, we can rely on the powerful and efficient
2D convolutional network, rather than the large MLP backbone,
to extract condition information from synthetic renderings and
characterize the dynamic head appearance.
As shown in Fig. 5, with the 3D hint from the facial model, our

representation improves the quality of view-consistent image syn-
thesis. The usage of both front, left and right elevation is a succinct
but efficient description for 3D human head, containing the full
observation of the primary part of the head, as well as getting rid of
the constrain from the coarse geometry of the mesh model. Setting
more planes will lead to information redundancy and unnecessary
memory consumption.
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4.1.2 Conditional Learnable Embeddings. Though our proposed
representation is competent for the generation of expression-related
canonical head appearance, there is still an unsolved problem: the
misalignment between the tracked facial model and the ground-
truth observation, which may lead to the frame-wise inconsistent
shape. We tackle it by setting additional conditional embeddings
for our representation to distinguish similar expressions at different
frames.

To account for the misalignment challenges, the previous method
[Gafni et al. 2021] also provides per-frame learnable embedding to
the neural head avatar, which contribute to better training sequences
reconstruction but cannot eliminate the unnatural head shaking
while being driven by time-varying expressions in the test phase.
This is because it conditions the MLP backbone with embeddings in
an auto-decoding fashion [Park et al. 2019], causing the embeddings
to overfit the training dataset. Thanks to our representation that
conditions the scene with orthogonal synthetic renderings, we con-
dition the plane feature generators with the learnable embeddings,
which are fed into a mapping network to modulate the convolu-
tional kernels of the networks, in the manner of StyleGAN2 [Karras
et al. 2020b]. The embeddings essentially serve as the normaliza-
tion of the overall feature and concentrate on maximizing global
similarity instead of overfitting per-frame local details during the
training. Hence our condition manner contributes to producing a
latent space with better interpolation performance and learning a
consistent expression-independent head shape. As shown in the
Fig. 6, apart from the reasonable expression-related deformation
around the cheek, our animation results hardly present shape shak-
ing, proving that our conditional embeddings are able to improve
the animation stability.

Specifically, the per-frame embedding is firstly input to a shared
mapping network to yield an intermediate latent code which then
modulates the convolutional layers of all the separate generators.
By constraining the variance of the learnable embeddings, there
is a preference to let the generator mainly rely on the synthetic
renderings for prediction, and per-frame embedding is utilized to
account for the variability resulting from the tracking error.

4.1.3 Pose-Related Non-Rigid Deformation. Though our solution is
able to tackle the skeleton motion of head that will be introduced
in next section, there still exists pose-related non-rigid deformation
caused by head movements in the canonical space, especially in
the neck region. In order to describe this, similar to the tackling of
per-frame learnable embedding, the estimated head poses are also
fed to the mapping network to condition the avatar generation.

4.2 Head Motion Decoupling Module
In this section, we will explain how to handle the rigid skeleton
deformation driven by head poses. The straightforward treatment in
Nerface [Gafni et al. 2021], that the estimated head poses serves as
camera poses, leads to the identical motion of both head and body,
which is unrealistic. In order to render images agreeing with the
ground-truth observation, the relative movement between the head
and torso needs to be considered. As shown in Fig. 7, the canonical
appearance volume 𝐻𝐶 should be warped to an observed posed

Fig. 7. Decomposition of head movement. The heatmap in LBS weight
volume illustrates that the head (red region) moves according to the pose
vector 𝑝 and the torso (blue region) is hardly affected by the head pose.

appearance volume 𝐻 with the rigid deformation 𝑇 :

𝐻 (x, 𝑀𝑡 , pt, 𝛾t) = 𝐻𝐶 (𝑇 (x, pt), 𝑀𝑡 , 𝛾t, pt) (3)

Specifically, we compute the head rigid deformation 𝑇 as inverse
linear blend skinning that maps points from the posed space to the
shared canonical space:

𝑇 (x, pt) = 𝑤𝑝 (x) (𝑅ℎ𝑒𝑎𝑑x+𝑡ℎ𝑒𝑎𝑑 )+(1−𝑤𝑝 (x)) (𝑅𝑡𝑜𝑟𝑠𝑜x+𝑡𝑡𝑜𝑟𝑠𝑜 ) (4)

where 𝑤𝑝 represents the blend weight, 𝑅ℎ𝑒𝑎𝑑 and 𝑡ℎ𝑒𝑎𝑑 the head
rotation and translation which comes from estimated head pose pt,
and 𝑅𝑡𝑜𝑟𝑠𝑜 and 𝑡𝑡𝑜𝑟𝑠𝑜 means the torso movement which is static by
default. In order to avoid overfitting caused by learning backward
skinning [Chen et al. 2021; Zheng et al. 2022], following Human-
Nerf [Weng et al. 2022], we solve for the weight volume in canonical
space to derive the𝑤𝑝 as:

𝑤𝑝 (x) =
𝑤𝑐 (𝑅ℎ𝑒𝑎𝑑x + 𝑡ℎ𝑒𝑎𝑑 )

𝑤𝑐 (𝑅ℎ𝑒𝑎𝑑x + 𝑡ℎ𝑒𝑎𝑑 ) + (1 −𝑤𝑐 (x))
(5)

Concretely, we set a 3D convolutional network𝑊𝑐 which inputs a
constant random vector and generates the canonical weight volume
𝑤𝑐 (𝑥) with limited resolution that can be resampled via trilinear
interpolation. With the optimized motion decoupling module, our
method can separate out the head movement and stabilize the torso
motion.

4.3 Photo-Realistic 3D-Aware Portrait Synthesis
Although the aforementioned hybrid NeRF-based representation is
more expressive than available methods, only relying on pixel super-
vision (MSE/l1 RGB loss) can hardly yield high-frequency details in
the rendered images. Hence, we incorporate the 3D representation
into an image2image translation architecture and train the overall
network jointly in an adversarial manner to enhance facial details
and recover realistic portrait images.

Based on the established appearance volume, volume rendering is
implemented using two-pass importance sampling as in [Mildenhall
et al. 2020]. In order to remain more 3D-aware information for the
subsequent module to generate view-consistent images, similar to
previous works [Chan et al. 2022; Gu et al. 2021; Hong et al. 2022;
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Fig. 8. The architecture of image2image translation network.

Niemeyer and Geiger 2021], we predict a low-resolution feature
map 128× 128× 64 from a given camera pose via volumetric render-
ing, instead of directly rendering an RGB image. However, different
from these methods leveraging up-sample super-resolution (SR)
module, our approach chooses a UNet-style image2image trans-
lation network to transfer the raw feature maps to the final RGB
images. The down-sampling encoding process in UNet helps the 2D
network learn the global portrait features, which conduces to the
view-consistent images generation.

Our architecture is presented in Fig. 8, which includes two main
modifications. First, we incorporate skip connections in the decoder,
which map each intermediate feature image to an RGB image and
integrate the previous output with the next output through addition.
Second, we represent the output image as a wavelet (WT) follow-
ing [Gal et al. 2021], and the RGB image is generated through an
inverse wavelet transform (IWT). This design choice helps reduce
the number of parameters and speed up network computations.
The joint training of the overall network can guide NeRF mod-

ule to provide sufficient and appropriate information for the im-
age2image translation module to raise 3D awareness, for regulariz-
ing time- and view- inconsistent tendencies. In the next section, we
will explain the training procedure and the used loss functions in
detail.

4.4 Network Training and Avatar Re-Animation
4.4.1 Training Strategy. Given the tracked facial models of the train-
ing sequence and segmented mask images, we employ a two-stage
training procedure to optimize the neural head avatar, including
the pretraining of the NeRF-based appearance volume and the over-
all joint training. Firstly, we train only the volume renderer part,
the parametric model conditioned NeRF along with the motion
decoupling module, to preliminarily establish 3D representation.
The objective of the training at the first stage is composed of two
components, including an RGB reconstruction loss and a mask loss:

L𝑛𝑒𝑟 𝑓 = 𝜆𝑟𝑔𝑏L𝑟𝑔𝑏 + 𝜆𝑚𝑎𝑠𝑘L𝑚𝑎𝑠𝑘 (6)

For ease of notation, we drop the subscript (t) of all variables in this
subsection.
RGB Reconstruction loss:We additionally set a single linear

layer for converting the 64-channel color feature output by the MLP
decoder to a 3-channel RGB, and calculate the pixel color via volume
rendering [Mildenhall et al. 2020]. The main supervision is L𝑟𝑔𝑏

that measures the mean squared error between the rendered and

Fig. 9. Re-animation. For an established head avatar, we implement re-
animation by transferring the pose and expression parameters from a facial
model estimated from a source video to the avatar facial model.

true pixel colors:

L𝑟𝑔𝑏 =
∑︁
𝑟 ∈𝑅

𝐶𝑟 −𝐶 (𝑟 |𝑀, p, 𝛾)
2
2 (7)

where 𝑅 is the set of rays in each batch, 𝐶𝑟 the ground truth pixel
color,𝐶 (𝑟 |𝑀, p, 𝛾) the corresponding reconstructed color determined
by parametric model (𝑀, p) and conditional variables (𝛾 ) and the
network (𝐻 ) via volume rendering function.
Silhouette Mask loss: Additionally, we utilize the foreground

mask that can be easily obtained with BgMatting [Lin et al. 2020]
algorithm to provide supervision:

L𝑚𝑎𝑠𝑘 =
∑︁
𝑟 ∈𝑅

𝐵𝐶𝐸 (𝑆𝑟 , 𝑆 (𝑟 ∥𝛿, p, 𝛾)) (8)

where 𝐵𝐶𝐸 (·) is the binary cross entropy loss calculated between
the rendered silhouette mask value 𝑆 (𝑟 ∥𝛿, p, 𝛾) and the ground truth
mask 𝑆𝑟 .
Next, we train the whole network end-to-end in an adversar-

ial manner with a discriminator [Gal et al. 2021], using the non-
saturating GAN loss [Goodfellow et al. 2014] with R1 regulariza-
tion [Mescheder et al. 2018], denoted L𝑎𝑑𝑣 . On top of that, the
additional loss terms, an l1-norm reproduction loss L𝑟𝑒𝑐𝑜𝑛 and a
perceptual loss L𝑝𝑒𝑟𝑐𝑒𝑝 , are utilized to penalize the distance be-
tween the synthesized image and the ground-truth image.

L𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑟𝑒𝑐𝑜𝑛L𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑝𝑒𝑟𝑐𝑒𝑝L𝑝𝑒𝑟𝑐𝑒𝑝 + 𝜆𝑎𝑑𝑣L𝑎𝑑𝑣 (9)

4.4.2 Full Head Re-Animation. After network training, the neural
head avatar is obtained and can be used to faithfully reconstruct the
4D training sequence and be observed under novel viewpoints. As
shown in Fig. 9, facial reenactment can be achieved by transferring
expression and pose information from the actor to the avatar. Specif-
ically, given a monocular source video, we only need to extract pose
and expression parameters from the estimated parametric model for
each frame and combine these parameters with our pre-established
avatar-specific facial model to generate the sequence of deformed
mesh models serving as the network input. As for the conditional
embedding vectors, we use the average of all learned embeddings
and fix it during the test phase. Finally, the photo-realistic head ap-
pearance, which shares the same identity with the modeled avatar
but has the novel poses and expressions from the actor in the source
video, is generated.

4.4.3 Implementation Details. We use Adam optimizer to train our
networks with the learning rate to 1 × 10−3 for the image-to-image
translation module and 5×10−4 for all the others. We use 80 samples
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(64 from coarse sampling and 16 from fine sampling) per ray. The
first stage of training takes about 12 hours and the joint training
takes about 36 hours using two NVIDIA 3090 GPUs, while render-
ing an color image with resolution of 512×512 typically takes 0.15
seconds on one NVIDIA 3090 GPU.

5 EXPERIMENTS
Dataset and Metrics. We separate the evaluation and comparison
into two parts: monocular-video-based andmulti-view-videos-based
experiments. Our monocular dataset contains the public sequence
from I M Avatar [Zheng et al. 2022] and a self-made sequence cap-
tured with a phone. We collect multi-view sequences with six cam-
eras focusing on the frontal face. All images are cropped and scaled
to 512x512. We calculate the foreground masks with BgMatting [Lin
et al. 2020] and estimate th per-frame parametric facial model Face-
Verse [Wang et al. 2022b] using thir released code. Not that we
also track eye gaze and additionally draw the position of pupils on
top of the RGB renderings. With each sequence split into training
frames and testing ones, we train the networks using the training
frames from all viewpoints, and test the animation quality using
the testing frames. For quantitative evaluation, we use two standard
metrics: peak signal-to-noise ratio (PSNR) and learned perceptual
image patch similarity (LPIPS).

5.1 Comparisons
We mainly compare our method with the state-of-the-art 3D head
avatar modeling methods: Nerface [Gafni et al. 2021], IM Avatar
(IMA) [Zheng et al. 2022], RigNeRF [Athar et al. 2022] and Neural
Head Avatar (NHA) [Grassal et al. 2022]. For the monocular settings,
we also compare with 2D facial reenactment method Head2Head++
(H2H++) [Doukas et al. 2021]. We conduct the comparison on the
dataset of [Zheng et al. 2022] and our own data. For IMA, NHA and
H2H++, the released data preprocessing codes are utilized to process
the monocular videos, and we use our tracked data for Nerface. 2
As the code of RigNeRF is not open-source, we re-implement it and
leverage the tracked data of IMA’s preprocessing codes to train.
To validate the expressiveness of our synthetic-rendering-based
NeRF, we also provide a NeRF-baseline(SynR-NeRF) without the
image2image translation module.

case 1 case 2
Method PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
Nerface 26.47 0.221 24.45 0.164
IMA 25.59 0.208 23.90 0.166
NHA 19.54 0.154 18.21 0.158

RigNerf 27.12 0.202 27.92 0.118
H2H++ 24.39 0.258 27.12 0.154

Ours(SynR-NeRF) 27.24 0.125 28.78 0.109
Ours 27.58 0.070 28.476 0.058

Table 1. Quantitative Evaluation for monocular-videos datasets. Case 1
refers to the top two rows of the Fig. 10 and case 2 refers to the bottom two
rows.

2For fair comparisions, we additionally take the position of pupils besides expression
parameters as input.

case 1 case 2
Method PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Nerface-MV 21.77 0.239 19.90 0.247
NHA-MV 16.39 0.238 14.96 0.216

Ours(SynR-NeRF) 22.66 0.122 20.06 0.15
Ours 23.83 0.078 21.65 0.095

Table 2. Quantitative Evaluation for sparse-views-videos datasets. Case 1
refers to the top two rows of the Fig. 11 and case 2 refers to the bottom two
rows.

Qualitative results are presented in Fig. 10. For IMA and NHA,
their texture heavily relies on shape reconstruction and the per-
formance of appearance recovery is inferior. Nerface cannot split
the head motion and is more prone to generate unstable results for
unseen expressions as it lacks structure prior from the parametric
model. H2H++ suffers from unrealistic image artifacts especially
when dealing with challenging head poses. As RigNeRF is built on
a backward deformation field guided by a coarse 3DMM mesh, for
the unconstrained area such as the mouth interior, RigNeRF tends
to establish ambiguous correspondences and generates blurry ap-
pearance. Compared with the above approaches, our SynR-NeRF
baseline is capable of full-head control and accurate reconstruction
of the expressions and head poses. Our full pipeline can moreover
recover high-frequency details. The quantitative results presented
in Tab. 1 further demonstrates the superiority of our method. Note
that instead of focusing on the pixel-wise similarity, our full pipeline
further improves the strength in detail generation and increase the
perceptual similarity, which is proven by the gap of LPIPS scores
between our method and the other methods. We also illustrate the
comparison on monocular-based animation in Fig. 12. In this ex-
periment, we utilize part of the video from IMA dataset to drive an
established head avatar. While dealing with novel expressions and
poses obviously different from the training dataset, our approach
shows significantly superior performance and robustness.

For the multi-view settings, as far as we know, there is no method
focusing on sparse-views-based head avatar modeling available. To
this end, similar to our extension to multiview scenario, we extend
Nerface-MV and NHA-MV, by adopting multiview parametric face
model tracking and optimizing the avatar according to multi-view
image evidence. 3 Compared with monocular data, multi-view ob-
servations can help model a more complete 3D head avatar, but
also cause more obvious misalignment between the estimated mesh
models and images due to the limited expressiveness of the para-
metric model, which raises more challenges for high-quality ap-
pearance recovery. Fig. 11 illustrates the qualitative results of two
different views, which demonstrates that our method can achieve
fine-grained expression control and generate a view-consistent ap-
pearance. Nerface tends to produce view-inconsistent artifacts and
NHA struggles to describe the topology-varying parts like glasses.
The numeric results in Tab 2 show that our method achieves higher

3As IMA relies onDECA [Feng et al. 2021b] for tracking, which cannot straightforwardly
accommodate to multi-view setting, we do not include it in multi-view experiments.
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Fig. 10. Comparison with the state-of-the-art methods on monocular video datasets. From left to right: ground truth images, I M Avatar [Zheng et al. 2022],
Neural Head Avatar [Grassal et al. 2022], Head2Head++ [Doukas et al. 2021], Nerface: [Gafni et al. 2021], RigNeRF [Athar et al. 2022], our NeRF-baseline and
ours. The results demonstrate the superior performance of our method in terms of realistic appearance recovery and fine-grained expression control.

accuracy in both metrics. We present the monocular-based anima-
tion results in Fig. 12, which demonstrates our better performance
on 3D reenactment.

5.2 Ablation Study
Synthetic-rendering based condition In this part, two modi-
fied baselines were implemented for this ablation study. The first
one, named ’ExprPlanes-NeRF’, replaces our synthetic-rendering-
based condition with the implicit vector-based condition used in
Nerface, with all other things being equal. The second baseline,
named ’ExprMLP-NeRF’, further replaces the orthogonal-planes-
based neural representation with a deep MLP backbone used in
Nerface. To evaluate the effectiveness of our synthetic-rendering-
based volumetric representation, we optimized a head avatar on a
monocular video dataset using these two variants, and the results
are presented in Fig. 13 and Tab. 3. Comparing ’ExprPlanes-NeRF’
and ’ExprMLP-NeRF’, we found that only applying the orthogonal-
planes representation does not significantly improve performance.

PSNR SynR-NeRF
(Ours)

ExprPlanes
NeRF

ExprMLP
NeRF

Ba
ck
bo

ne MLP ✓

Orthogonal planes ✓ ✓

Co
nd

iti
on Expression vector ✓ ✓

Synthetic rendering ✓

PSNR 26.05 22.93 22.10

LPIPS 0.1516 0.1683 0.1780

Table 3. Ablation study on our orthogonal synthetic-rendering based volu-
metric representation.
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Fig. 11. Comparison with other methods on multi-view video datasets. From left to righ: ground truth images, Neural Head Avatar [Grassal et al. 2022],
Nerface: [Gafni et al. 2021], our NeRF-baseline and ours. The results prove our ability in representing topology-varying objects (glasses) and recovering
view-consistent high-fidelity appearance.

However, by using synthetic renderings for explicit condition, our
method contributes to more accurate expression control.
Image-to-Image Translation Module Results in sec. 5.1 have

proven that the image translation module effectively enhances the
fine-level details. We implement other two baselines for the ablation
study to separately validate the choice of the 2D neural rendering
network and the strategy of joint training: 1) We replace the image
translation network with the up-sample SR module used by [Chan
et al. 2022; Niemeyer and Geiger 2021] and train the whole pipeline
end-to-end. However, when attempting to train the network with
adversarial loss functions, we empirically find it hard tomaintain sta-
ble training. We argue that, without the encoder part, the up-sample
SR module alone is not suitable for the person-specific dataset with
insufficient diversity. Instead, l1 loss and perceptual loss are adopted
in this experiment. 2) We independently train the image translation

module with GAN loss to super-resolution the rendered images
from a frozen pretrained SynR-NeRF. Experiments are conducted
on a multi-view sequence, using 5 views for training and leaving
one view for evaluation. As shown in Fig. 14 and Tab. 4, up-sample
SR based baseline fails to generate fine details. For separate train-
ing baseline, it operates primarily in image-space and introduces
undesirable inconsistent artifacts, when dealing with the complex
distribution of multi-view images. Through end-to-end training the
whole framework, our pipeline contributes to guaranteeing realistic
detail generation performance.
Zero-posed Orthogonal Mesh Rendering In our method, we

render the 3D facial model orthogonally to create a canonical feature
volume in zero pose for feature conditioning. In this part, we intro-
duce a baseline method called ’Posed Rendering,’ which involves
rendering the pose-dependent meshes to condition the orthogonal
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Fig. 12. Comparison with other methods for the task of head animation. From left to right: actor images, I M Avatar [Zheng et al. 2022], Neural Head
Avatar [Grassal et al. 2022], Head2Head++ [Doukas et al. 2021], Nerface: [Gafni et al. 2021], RigNeRF [Athar et al. 2022] and ours. Results demonstrate the
generalization of our method to novel expressions and poses.

Fig. 13. Ablation study on our orthogonal synthetic-rendering based volu-
metric representation.

feature planes. The results, as shown in Fig. 15 and Tab. 5, indicate

Fig. 14. Ablation study on the Image Translation Module. Using the image
translation module instead of up-sample SR module contributes to recover-
ing fine-scale details and the joint training strategy further helps eliminate
image-space artifacts. Please zoom in and also refer to our video for more
clear comparisons.
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Ours baseline 1 baseline 2
Image Translation Up-Sample SR Image Translation

End-to-End End-to-End Separate
FID 7.67 8.62 17.34

Table 4. Ablation study on Image Translation Module.

Fig. 15. Ablation study on orthogonalmesh rendering. Besides the generated
portrait images, we also show the front-view orthogonal renderings in the
top left corner of the picture.

Posed Rendering Ours (SynR-NeRF)
PSNR 27.67 29.79
LPIPS 0.1324 0.1219

Table 5. Ablation study on orthogonal mesh rendering.

that ’Posed Rendering’ performs worse on the testing set. We at-
tribute this to the coupling of expressions and poses, which creates
false correlations between the facial appearance and the face loca-
tion in the renderings. Plane feature generators have to remember
the potential diverse locations in the input image space, leading to
reduced performance. In contrast, our method orthogonally renders
zero-posed meshes, enabling the generators to concentrate on ex-
tracting expression-related information from the renderings and
achieve fine-grained control.

Conditional Learnable EmbeddingsOne strength of ourmethod
is that we solve the expression-shape coupling issue presented in
previous NeRF-based head avatar methods.We owe it to our strategy
of modulating plane feature generators, as metioned in Sec. 4.1.2.
For evaluation, similar to Fig. 6, we implement a baseline that the
NeRF is conditioned in an auto-decoding fashion by inputting the
learnable embeddings into the MLP decoder. To fully explore the
expression-pose coupling issues, we fix the head pose and only
transfer the expression to animate the avatar. The results are pre-
sented in the video. Nerface and our modified baseline both show

Fig. 16. Ablation study on pose condition.

obvious jitter, while our method illustrates stable animation results
and better appearance quality.

Pose Condition As mentioned in Sec. 4.1.3, by introducing pose
vectors into condition, our method is able to describe pose-related
non-rigid deformation in the canonical space. Fig. 16 illustrates two
cases. In the first case, without considering pose, artifacts are visible
in the side-view observation when the head turns around. Our
method, which includes pose condition, eliminates these artifacts
and enhances view-consistency. In the second case, we demonstrate
the ability of our method to describe simple pose-related movements
of hair.

6 DISCUSSION AND CONCLUSION
Limitation. Although our approach is able to synthesize high-
quality 3D-aware portrait images, the proxy shapes produced by our
method cannot be competitive with the state-of-the-art alternative
approaches [Grassal et al. 2022; Zheng et al. 2022], as shown in Fig. 19
and Fig. 17. While this is not important for the photo-realistic stable
view-consistent head image synthesis application we consider in
this paper, other applications may benefit from reconstructing more
accurate morphable geometry.

Compared to surface-based avatar modelingmethods [Zheng et al.
2022], our method struggles with out-of-distribution head poses.
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Fig. 17. The proxy shapes of multiview-based avatars produced by our
method. We visualize the 3D shape by using the marching cubes algo-
rithm [Lorensen and Cline 1987] on the density output of our implicit
radiance filed to produce a surface mesh.

Additionally, because our method relies on a parametric model
to control facial expressions, it is challenging to handle extreme
expressions that cannot be expressed by the facial model, as depicted
in Fig. 18. Furthermore, while our method can capture simple pose-
related deformation of long hair, it faces difficulties in dealing with
challenging topology-varying cases caused by large hair movements.
Special treatment of the hair region is an important problem in the
future.

Conclusion. We introduce a novel modeling method that firstly
achieves high-resolution, photo-realistic and view-consistent por-
trait synthesis for controllable human head avatars. By integrat-
ing the parametric face model with the neural radiance field, it
has expressive representation power for both topology and appear-
ance, as well as the fine-grained control over head poses and fa-
cial expressions. Utilizing learnable embeddings to modulate fea-
ture generators, our method further stabilizes animation results.
Besides monocular-video-based avatar modeling, we also present
high-fidelity head avatar based on a sparse-view capture system.
Compared to existing methods, the appearance quality and anima-
tion stability of our head avatar is significantly improved.
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Fig. 19. Comparison with EG3D on novel view synthesis.
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A COMPARISON WITH EG3D
EG3D [Chan et al. 2022] is a state-of-the-art powerful generative
model for HD 3D portrait, hence we compare it with our method to
demonstrate the ability on novel view synthesis. After fitting the
pretrained EG3D model with a single reference frame [Roich et al.
2021], we render the reconstructed 3D head in different views. As
Fig. 19 shows, our method models a more vivid head avatar and
presents more convincing novel view synthesis, which benefits from
the joint learning of the temporal observation of the person-specific
video data. Besides, EG3D performs worse on poses that are rare in
FFHQ dataset. As for geometry, as we only utilize monocular view
observation and do not apply any depth or sigma regularization,
the geometry of our head avatar is noisier than EG3D’s result.

Fig. 20. Ablation study on model condition manner. Representing the dy-
namic feature on the mesh surface causes unrealistic artifacts at the edge
region of the model mesh. Notice the ambiguous appearance in the mouth
and the sharp seam around the neck.

B COMPARISON WITH UV-BASED NERF BASELINE
To validate the effectiveness of our adopted synthetic-rendering-
based condition, we implement a mesh conditioned baseline (UV-
NeRF) that encodes the feature map defined based on the UV pa-
rameterization 4 instead of our orthogonal plane features. For each
sample point, the local feature, obtained from the nearest surface ver-
tices, serves as the input to the MLP decoder. This baseline network
is trained under the same setting as our network. The experiment
is conducted based on a monocular dataset and the results are pre-
sented in Fig. 20. Not surprisingly, though UV-NeRF can accurately
reconstruct the expression and reproduce reliable facial appearance,
it generates unrealistic artifacts at the edge region of the model
mesh. Notice the ambiguous appearance in the mouth and the sharp
seam around the neck. Our synthetic-rendering-based condition
fully utilizes the powerful convolutional network to learn the rea-
sonable correspondence between the facial model and the entire
head appearance, synthesizing consistent and stable images.

C ABLATION STUDIES ON THE TEXTURED MESH
RENDERING CONDITION

To further validate our synthetic-rendering-based condition in detail,
we implement two baselines that generate the feature volume di-
rectly from latent codes. The first one, called ’VectorPlane’, uses the

4We set a learnable feature map in UV space which is shared for all frames, and utilize a
U-Net with 7 layers and the number of channels used are 64, 128, 256, 512, 𝑎𝑛𝑑512. For
each frame, the U-Net is input with the shared learnable feature map and per-frame UV
normal map to generate an expression-related feature map on the UV parameterization.
Specifically, the size for our shared UV feature map and generated expression-related
UV feature map is 256𝑥256𝑥64.
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Fig. 21. Ablation studies on the textured mesh rendering condition. The last
row visualizes the synthetic renderings of the front view.

expression parameters as input for the feature generation backbone,
while the second one, ’VectorPlane(ExprMod)’, feeds the expression
parameters to amapping network tomodulate the convolutional ker-
nels of the networks. Both baselines modulate the feature generation
backbone with pose vectors and per-frame latent codes. As shown
in Fig. 21 and Tab. 6, learning the mapping from the global vectors
to appearances tends to overfit training sequences, and the ability
of expression control degraded for out-of-distribution expressions.

We expound our analysis on the differences between the two con-
ditional methods. Two similar expressions may be too close in the
parameter space for a global-vector-conditioned feature generator
to distinguish between them. Our synthetic-rendering-based condi-
tional method preserves the spatial alignment between the mesh
renderings and the feature planes, hence the local spatial changes
in the rendering image space can be reflected in the feature volume.
Additionally, as we align individual local features at the pixel level
of renderings to the global context of the entire appearance, it is
more likely to infer plausible results for unseen expressions.
Besides, we also implement a baseline, named ’woTexture’, that

only utilizes normal and mask renderings to condition feature vol-
ume generation. Removing texture rendering is feasible for person-
specific avatar modeling and does not significantly affect the robust-
ness of expression control. However, despite the similar numerical
results, the visualization results of our method exhibit more detailed
appearances around the eyes. We hypothesize that the texture ren-
dering contains more high-frequency information around the eye
region, as shown in the last row of Fig. 21, which may facilitate the
network in effectively learning dynamic appearance around eyes.

VectorPlane
(ExprMod) VectorPlane woTexture SynR-NeRF

PSNR 26.99 27.53 28.40 30.20
LPIPS 0.1446 0.1358 0.1268 0.1243
Table 6. Ablation studies on the textured mesh rendering condition.

Fig. 22. Comparison with a 2D re-enactment baseline on monocular video
datasets. The results demonstrate the superior performance of our method
in terms of realistic appearance recovery and robust expression/pose control.

D COMPARISON WITH 2D RE-ENACTMENT BASED
BASELINE

By omitting the Nerf module, we implement a 2D re-enactment
method that only utilizes our image2image translation module. In
our practice, the image2image translation network takes the render-
ings of the fitted 3DMM in the observed view as input and generates
the corresponding 2D images. This 2D re-enactment method has lim-
itations. Firstly, it cannot establish an avatar based on a multi-view
dataset because it cannot differentiate between camera poses and
head poses. Secondly, when applied to monocular videos, the 2D re-
enactment method is sensitive to the location of the facial model in
the image space, as shown in Fig. 22. The 2D re-enactment method
is prone to generating artifacts or distorted faces, particularly at the
edges of the image.
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Data IO Feature Plane
Generation NeRF Module 2D Image

Module Total

47.4ms 22.3ms 58ms 24.5ms 152.2ms
Table 7. Detailed time consuming during inference.

E MULTI-VIEW SETTING
While fitting per-frame 3DMM model, we use the detected land-
marks in multi-view images at the same instant as supervision, and
additionally estimate the scale parameter of 3DMM. As for NeRF op-
timization, we simply leverage multi-view images of the same frame
to supervise the appearance, with all loss terms and the training
strategy as same as monocular-based setting.

F DATA PREPROCESSING
We optimize the shape and texture parameters using the first few
frames of the video and these parameters remain fixed for the re-
maining frames of the video. For each frame’s 3DMM fitting, we

optimize the pose, expression, and illumination parameters, which
are initialized as the last frame’s fitting results. Once the 3DMM
model is tracked, we utilize PyTorch3D [Ravi et al. 2020] to render
per-frame synthetic renderings onto orthogonal planes. The track-
ing code mainly comes from the open-source project Faceverse 5.
Besides, to perform eye gaze tracking, we segment the dark area
within the eye region in the given frame. The centroid of the dark
area is considered the pupil, and we calculate the pupil’s relative po-
sition inside the eye based on the detected landmarks surrounding
the eye. Finally, we mark the pupil as a small dot in the front-view
orthogonal renderings.

G INFERENCE TIME
Tab. 7 shows the detailed time consuming during inference. Render-
ing a color image with a resolution of 512x512 takes 0.15 seconds
on one NVIDIA 3090 GPU, and the most time-intensive part is the
volume rendering of our NeRF module.
5(https://github.com/LizhenWangT/FaceVerse)
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