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Abstract

We present a multi-scale camera array to capture and
synthesize gigapixel videos in an efficient way. Our acqui-
sition setup contains a reference camera with a short-focus
lens to get a large field-of-view video and a number of un-
structured long-focus cameras to capture local-view details.
Based on this new design, we propose an iterative feature
matching and image warping method to independently warp
each local-view video to the reference video. The key fea-
ture of the proposed algorithm is its robustness to and high
accuracy for the huge resolution gap (more than 8× resolu-
tion gap between the reference and the local-view videos),
camera parallaxes, complex scene appearances and color
inconsistency among cameras. Experimental results show
that the proposed multi-scale camera array and cross reso-
lution video warping scheme is capable of generating seam-
less gigapixel video without the need of camera calibration
and large overlapping area constraints between the local-
view cameras.

1. Introduction
Traditionally, video systems have assumed that the reso-

lution of the camera matches the resolution of the display,
i.e., HD video uses HD cameras and displays, 4K video uses
4K cameras and displays, etc. The recent development of
gigapixel [18, 1, 10, 4] and VR video systems [20] has il-
lustrated the potential and need for systems in which the
camera captures substantially more image information than
the display can show. These systems use tiled multiscale
image structures to enable viewers to interactively explore
the captured image stream.

Size, weight, power and cost are central challenges in gi-
gapixel video. The multiscale optical design of the Duke
AWARE cameras [4] substantially reduced the size and
weight of gigapixel scale optical systems, but in video op-
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eration the volume and weight of camera electronics was
more than 10× larger than the optics [27]. Moreover, com-
pressive sampling strategies are essential to practical imple-
mentation of gigapixel scale broadcasting systems. Typical
scenes are highly compressible, often with large sections
of sky, foliage and background and with limited corridors
of action such as roadways or playing fields. The ideal gi-
gapixel system would have variable frame rates across the
scene and adaptively capture regions base on activity levels.

To this end, this paper presents an efficient method, in
terms of budget, sensor bandwidth and set up labors, for
gigapixel videography using a novel multiscale camera ar-
ray. Our capture system owns a reference camera with a
short-focus lens to capture a reference video with compara-
bly large field-of-view, and a parallel of local-view cameras
each with a long-focus lens to obtain high-definition local-
view videos. Such setting enables gigapixel videography
by independently warping each local-view video to the ref-
erence video, and allows flexible, adaptive and moveable
local-view camera setting during data capture. However, it
also poses new challenges for the video warping algorithm,
including parallaxes, abundant and various complex scene
appearances, color inconsistency among cameras, and, most
importantly, a more than 8× resolution gap that exists be-
tween the reference and the local-view videos.

We therefore contribute a cross resolution matching and
warping approach to automatically and iteratively embed
each local-view video in the reference video. Our algorithm
jointly leverages patch-based matching, pixel-based varia-
tional warping, mesh-based homography and temporal sta-
bilization, to form a coarse-to-fine optimization framework
with several iteration updates between feature matching and
video warping. In each iteration, both the feature matching
and the video warping modules gradually update the infor-
mation to benefit each other, finally leading to a robust and
precise warping result.

With the proposed algorithms, our system enables sev-
eral unique capabilities over the prior works: 1) it bypasses
the need for careful camera alignment, tedious geometry
and color calibration [38, 13], as well as the requirement



(a) capture device (b) videos

Figure 1: Capture device. (a) our capturing device with hybrid cameras. (b) example data captured by our camera array.

for image overlaps among local-view cameras in available
methods [4, 18]; 2) it allows local-view camera movements
such that the gigapixel video is captured in an adaptive and
efficient way by allocating more sensor resources to the re-
gions of interest; 3) it enables parallel stitching of the final
high resolution video and may be optimized for real time
synthesis of gigapixel video in the future.

We demonstrate a system with 14 local-view video cam-
eras and successfully stitch them with another reference
camera. Experimental results validate that our proposed
cross resolution matching and warping algorithm is the only
algorithm that is competent in outdoor scene warping in the
face of more than 8× resolution gap. We believe that our
system and algorithm will open up new research on more
adaptive and efficient gigapixel video capture and synthesis
using capture setups with smaller size and lower cost.

2. Related Work
The contributions of this paper are two-fold, i.e., the sys-

tem contribution and the algorithm contribution. In this sec-
tion, we review these two aspects respectively.

2.1. Video Stitching Systems

High resolution videography [41] or 360◦ panoramic
video [20] has been achieved by stitching a large amount
of regularly spaced cameras. The main challenges in these
kind of array are the requirement of manually and precisely
structured and aligned with enough overlap of regions in
neighboring views. Parallax between cameras may cause
disturbing artifacts such as video misalignment and discon-
tinuity [36]. Video stitching systems using unstructured
camera arrays [28] bypassed the need to delicately layout
and calibration, but require large area of overlapping re-
gions for sparse feature matching and consume substantial
amount of computation resources in spatial-temporal opti-
mization to reduce artifacts caused by parallax.

The real gigapixel video camera [4] adopted a multiscale
imaging design, with a spherical objective lens producing
an image of the whole scene and 98 micro-optic cameras
each relaying a portion of the image onto its own sensor.
However, although relay cameras can be selected for imag-

ing regions of interest, the whole size of hardware frame-
work is fix. Moreover, because the image targets are out-
door scenes in a large scale, it presents great challenges in
optical design and evaluation [16], camera calibration and
mechanical testing [17].

Kopf et al. [18] demonstrated a motor-controlled cam-
era mount with a long-focus lens for capturing and stitching
gigapixel images. Pirk et al. [29] further proposed to add
video clips captured by the same camera and embed them
into the gigapixel image. Whilst our system shares a similar
embedding procedure, we face a more challenging problem
where the reference is an unsynchronized video captured by
a different camera. Moreover, it is of much lower resolution
with parallax and with different color settings. We there-
fore contribute the first method for matching and warping
of high resolution videos to the extremely low resolution
video reference.

Our system is also related with multi-camera systems us-
ing hybrid resolution setup. Sawhney et al. [34] proposed
the hybrid stereo camera system with 4x resolution gap be-
tween the high and the low resolution video. In our sys-
tem, to form a gigapixel video using a 4k reference video,
the resolution gap between the reference and the local-view
should be larger than 8x. Under this resolution gap, most
of the features in the high resolution one will disappear in
the low resolution one. Even though, 8x resolution gap has
been considered in the light field super-resolution systems
such as [3, 39], the data capture in their works are under
controlled indoor setup. In contrast, our system captures
wide range wild scene with large depth of field, resulting
in spatially nonuniform quality gap between the reference
video and the local view videos in our system. As demon-
strated in Sec 6, the PatchMatch method used in [3, 39] fails
with our data.

2.2. Matching and Warping Algorithms

For unstructured multi-view inputs, an image and video
stitching algorithm involves two steps: the feature match-
ing, i.e., building of sparse feature correspondences on over-
lapping regions, and the dense estimation of a per-pixel
warping field for the whole images. For the first step, a



number of feature descriptors such as SIFT [26][5], SURF
[2], DASIY [37], multi-scale oriented patches [6] and out-
lier elimination algorithm RANSAC [11] are widely used.
While these algorithms work quite well for images with
similar quality and resolution, their performances on large
cross-scale cases have not been examinated.

Warping field estimation is a crucial step to get the dense
per-pixel matching. Existing warping field estimations
can be divided into two categories: mesh-based homog-
raphy warping [24, 25] and pixel-based variational warp-
ing [32, 7]. For homography warping, since parallax ex-
ists between different images, a uniform transformation is
not powerful enough and the whole image is divided into
many blocks or mesh grids to estimate transformation pa-
rameters for each grids, resulting in a non-uniform warping
fields. As-projective-as possible warping [44], as-similar-
as possible shape-preserving image warping [25], combined
projective and similarity transform [9] and spatial-temporal
content-preserving warping [15] have been proposed for
stitching of images or videos. Different optimization prob-
lems are proposed for solving these transformations, where
the data terms are very similar (based on matched feature
points), and the difference lies in smooth terms. Weak
smooth terms make it possible to handle large parallax
but reduce the robustness to outlier matches or lack-of-
correspondence regions.

Most of the pixel-based variational warping methods are
based on the optical flow framework of Horn and Schunck
[14]. This kind of variational optimization is a local op-
timization on an under-determined problem, which can be
easily trapped into local minimum. Although robust regu-
larization such as L1 norm [43], sparse descriptor match-
ing term [8, 40], feature correspondences [32], coarse-to-ne
mechanism [42] have been proposed to handle large mo-
tions, the variational framework is still incompetent in pre-
serving scene structures.

3. System Overview
This paper proposes a multiscale camera system which

enables high quality and efficient gigapixel video capture.
Our system is integrated with one reference camera and 14
local-view cameras. All of them are PointGrey FL3-U3-
88S2C-C rolling-shutter cameras without hardware syn-
chronization requirement, and work at 4000× 3000 spatial
resolution and 15 fps frame rate. In particular, the local-
view cameras share a focal length fl = 135mm to cap-
ture the local high resolution videos, and the focal length of
the reference camera is fr = 16mm so as to cover a large
field-of-view of an outdoor scene. Both of the two kinds of
lenses cost only $150 for each. Each local-view camera can
be static or moving (see Fig. 1(a) left) during data capture.
Fig. 1(b) shows the reference video embedded with all the
local-view videos, and one of the local-view videos as well

(a) (b) (c)

(d) (e)

Figure 2: Artifacts caused by pixel-based warping (a,b,c)
and mesh-based warping (d,e). (a) A crop from the ref-
erence block, (b) corresponding region in the local-view
video, (c) warping result of typical optical flow [7], where
the boundary frame of the bus is seriously deformed, (d)
non-uniformly distributed matching points, and (e) mesh
based warping result using (d) as input, where the shape
of the ground is severely curved.

as its zoom-in detail. With the reference video, the con-
struction of a higher resolution video is similar to the case
of finishing a jigsaw puzzle with a provided low resolution
guide map, and all the local-view videos are enabled to form
accurately. Note that our system requires neither color nor
geometry calibration before data capture.

Preprocessing We first scale down each image in the
local-view video using the ratio fr/fl. A zero-mean nor-
malized cross-correlation (ZNCC) [22] matching is then ap-
plied on the whole scaled-down image to find its position
on the corresponding reference frame. For moving cam-
eras, we use Kalman filter [33] to predict the moving paths
for detecting and removal of erroneous matched positions.
Finally, we crop the best matched block out from the refer-
ence image and up scale it to the same size as the local-view
videos, denoted as reference block. The following warping
threads will operate on each local-view video and its cor-
responding reference block in parallel, which will be de-
scribed in Section 5.

4. Algorithm Analysis : Challenges

While our system enables many novel advantages as de-
scribed above, it brings the following new challenges.

Complex Warping Field Because of camera paral-
lax, scene depth variations, diversity of object appearances
(pedestrians, cars, trees, buildings, reflective regions, etc.)
and camera rolling shutter effects, the ideal warping field



Figure 3: Pipeline of our cross resolution matching and warping algorithm. The red arrows denote the feature correspondence
building process and the blue arrows denote the warping process.

between local-view video and reference block is highly non-
uniform. In addition, the temporal warping field should
guarantee the stability of the final warped video.

Large Resolution Gap Because the warping field be-
tween the local-view video and the reference block is highly
non-uniform, it is essential to build as-many-as-possible
and as-uniform-as-possible feature correspondences. How-
ever, there exists a fl/fr times, i.e., more than 8×, reso-
lution gap between the local-view video and the reference
block, and available feature detectors such as SIFT, SURF,
DAISY and LATCH are incapable in finding enough effec-
tive feature points in the reference blocks.

Color Inconsistency Two factors lead to the color in-
consistency: 1) vignetting in the local-view videos, and 2)
different color sensitivities among local-view videos.

As reviewed in Section 2 and shown in Fig. 2, existing
warping field algorithms are vulnerable to the above chal-
lenges. Pixel-based variational warping can handle large
non-uniformity, but fails in maintaining scene structures
that are sensitive to human eyes (Fig. 2(a,b,c)). Mesh-based
warping approaches can preserve scene structures since pix-
els in the same mesh quad follow a projective transforma-
tion. However, it is still challenging to handle a serious
nonuniform warping field because artifacts may appear near
boundaries of neighbor quads with a deficient number of
feature correspondences, as shown in Fig. 2(d,e).

5. Cross Resolution Matching and Warping

To solve the above key challenges introduced by the pre-
sented system, we propose a novel non-rigid warping algo-
rithm to warp each local-view video to its reference block.
Inspired by the iterative closest point (ICP) method [23]
widely used in non-rigid 3D geometry registration, we de-
sign the algorithm as iteration updates between feature cor-
respondence construction and image warping. The basic
idea is to start with a strict threshold with some highly con-
fident feature correspondences, and then gradually relax the
threshold with the increase of iterations. Warping and corre-
spondence are beneficial to each other, and with the increas-

ing of iterations, warping becomes more and more accu-
rate and the correspondences become more and more dense
and uniform. Note that in each iteration, we use different
correspondence and warping strategies. Fig. 3 shows our
3-iteration cross resolution matching and warping pipeline.
Overall, these iterations can be divided into two main parts,
i.e., global homography warping and mesh-based warping.

5.1. Global Warping Iterations

The former part of our iteration pipeline aims at find-
ing robust feature correspondences between each local-view
image and its reference block. As shown in the left dash
window of Fig. 3, initial feature correspondences are mea-
sured by structure similarity using zero-mean normalized
cross correlation (ZNCC) between patch pl in the local view
image Il and patch pr in reference block Ir. Based on the
matched correspondences, we then calculate a global ho-
mography H to warp the local-view image on the reference
block. In the second iteration, given the estimated homog-
raphy H, the algorithm detects as-many-as-possible reliable
matching points, still based on the ZNCC metric.

The ZNCC matching scheme in these two iterations can
be formulated as

p∗r =argmax
pr

ZNCC(Ir(pr, w), Il(pl, w))

s.t. ‖π(Hp̃l)− pr‖2 < ε,
(1)

where p̃l is the homogenization of pl and function π per-
forms perspective projection and dehomogenization based
on homography matrix H. In the first iteration, H is initial-
ized to be an identity matrix, and both the patch size w and
the search range ε are set to be 256. In the second iteration,
we refine the matching, and both w and ε are set to be 128.

We choose the ZNCC metric because of its robustness
to blur and luminance. Moreover, ZNCC can be acceler-
ated by FFT [22]. We compare our proposed feature match-
ing algorithm with the state-of-the-arts including SIFT [26],
SURF [2], DAISY [37] and LATCH [21]. As shown in Fig.
4, none of these feature detectors can find as many correct
correspondences as ours in the second iteration (Fig. 4(c)).
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Figure 4: The distributions of feature correspondences between a local-view image and its reference block. The ellipses
highlight the error matches.

5.2. Mesh-based Warping Iterations

Since the ideal warping field is non-rigid and complex,
a mesh-based warping strategy such as [24, 25] is essen-
tial for a successful warping. However, after the global
warping step, a large area of smooth texture regions still
lacks feature correspondences, e.g., the grassland region
in Fig. 4(c). In this situation, available mesh-based ho-
mography approaches introduce mismatches on these re-
gions, especially when the lack-of-feature areas appear on
the boundary of the image, As analyzed in Section 4.

Complementary optical flow matching. Against this
backdrop, we propose a novel mesh-based warping method
that takes the advantages of both mesh-based warping and
optical flow warping, and apply it in the second and the
third iterations. The key insight here is that the mesh-based
warping and variational optical flow warping are comple-
mentary. The former is excellent at visual salient regions
such as structures, while the later performs better on large
regions without feature correspondences.

Specifically, we perform a mesh-based warping using
feature correspondences detected in the second iteration.
Based on the warping result, a variational optical flow al-
gorithm is then applied to refine the per-pixel correspon-
dence between the reference and the local-view image. Af-
ter this, we obtain an improved per-pixel correspondence for
the smooth texture regions. This correspondence can not be
obtained by ZNCC matching because of its lack of spatial
smoothness prior regulizer. Also, note that the optical flow
algorithm can not be applied in the earlier steps because it
requires a comparably high quality initialization, which can
be better provided by the mesh-based warping step.

Lastly, our algorithm sparsely selects optical flow cor-
respondences as the complementary optical flow features.
The positions of these features should be 1) salient features
on the local-view image, or 2) on the mesh-grid vertices.
We combine them to guide the final mesh-based homogra-
phy warping.

Joint warping and stabilization. Our mesh-based

warping utilizes the as-similar-as-possible (ASAP) [25]
warping framework. To maintain the temporal stability of
the final warped video, we introduce a temporal stability
term in it. Mathematically, we minimize the energy func-
tion

E(V ) = λrEr(V ) + λtEt(V ) + λsEs(V ). (2)

Here, V is the positions of the deformed grid vertices. Er is
the data term to enforce the current warped local-view im-
age to be close to the reference block, andEt is the temporal
stability term. The smooth term Es regularizes the spatial
smoothness deformation on neighboring vertices, and is the
same as described in [25].

The data term Er sums the distances of all the feature
correspondences {pl, pr} on image pair {Il, Ir} (we omit
time notation t here) after warping V (defined on the grid
vertices) is operated. Er is formulated as

Er(V ) =
∑
pl

‖αpl
V − pr‖22, (3)

where αpl
is the bilinear interpolation weight of pl. For

more details of ASAP warping, please refer to [24][25].
The stability term Et is defined as

Et(V ) =
∑
pl

B(pl)‖αpl
V − (p̂′l + s)‖22, (4)

which sums the distances over the feature pair {pl, p̂′l} on
image Il and its temporal precedent warped image Î′l. Here,
notationˆimplies “warped” and ′ implies “temporal prece-
dent”. Still, the ZNCC metric is used in extracting these cor-
respondences. B denotes the indicator function and checks
if a pixel is on the static background, i.e., B(pl) = 0 if pl
locates on moving objects. s is the global translation be-
tween Il and Î′l, which can be calculated from the global
homography between Ir and its temporal precedent image
I′r.

Fig. 5 shows an example of the performance improve-
ment by adding the temporal stability term. In this case, the



Figure 5: Illustration of the effectiveness of the stabilization
term.

local-view camera is static, we calculate the per-pixel differ-
ence map between two continuous warped frames to show
its stability. With the aid of stability term, the difference
becomes much smaller.

Fig. 6 shows the effectiveness of the complementary op-
tical flow correspondences. As shown in Fig. 6(b), because
no matching features is found near the boundary, Some mis-
alignments (red ellipses) appear between the warped detail
video and the reference block. After enriching matching
points using complementary optical flow, the detail video
and reference block are aligned much better, see Fig. 6(c).

5.3. Post Processing

Color Alignment Spatio-temporal coherent color re-
sponse over the gigapixel space is crucial to the visual per-
ception. After non-rigid warping, a de-vignetting step and
a color transfer step are sequentially applied to remove in-
trinsic and extrinsic color inconsistency. Severe vignetting
usually exists in local-view images captured by long-focus
lenses, see Fig. 7(b) for an example. For each local view
image, we use the 6th order even polynomial vignetting
function [12] to compensate the vignetting.

We further take advantage of the fact that all the ref-
erence blocks share the same color style, and transfer the
color style of each reference block to the local-view im-
age based on the affine color mapping model [31][35]. Be-
cause of the extensively appearing and randomly distributed
overexposed objects like cars and windows of buildings, we
propose a local transfer model based on an edge aware in-
terpolator [32]. First, we uniformly sample N keypoints on
each local-view image, then we generateN regular overlap-
ping patches centered on these keypoints on both the ref-
erence and the local-view image. For each patch, we use
the Monge-Kantorovitch solution [30] to estimate an affine
mapping model [31]. Finally, an edge aware interpolator is
applied to compute a mapping model for each pixel.

Dealing with Overlaps Since our local-view cameras
are moveable, overlapping regions inevitably exist among
local-view cameras. To cope with possible misalignment

(a) reference block

(b) without complementary optical flow

(c) with complementary optical flow

Figure 6: Effectiveness of complementary optical flow. (a)
Reference block, (b) warping result without complementary
optical flow, (c) warping result with complementary optical
flow. Both (b) and (c) are shown by overlaying the local-
view part on the reference.

(a) (b) (c)

Figure 7: Color alignment. (a) With de-vignetting and
color transfer, (b) with color transfer only, and (c) with de-
vignetting only.

among warped local-view images, we need to optimize a
stitching seam based on Graphcut [19] algorithm. To as-
sure the capability of parallel processing on each local-view
camera, we perform Graphcut on the reference blocks, in-
stead of operation on the overlapped local-view images.
Fig. 8 demonstrates the seamlessly stitching of this scheme.

6. Experiments
We implement our algorithm in C++ on an Intel Core

i7-4790 CPU. Currently, without runtime optimization, the
whole pipeline costs about 4 seconds to warp a local-view
image on the reference video. We captured two sequences
(one in summer and one in winter) with each consists of



(a) reference block (b) GraphCut mask (c) stitching result

Figure 8: GraphCut on an overlap region and the stitching
result. (a) Reference block, (b) Graphcut mask based on the
reference block, and (c) stitching result.

Figure 9: The distribution of pixel misalignment (calculated
by optical flow) on the warped results of all the overlaping
regions.

200 frames. Fig. 11 demonstrates the final gigapixel video
stitching results. Four subimages are zoomed-in twice for
visualization of scene details including the traffic board
(more than 1 km away), car number plate (about 500 m
away) and human bodies anf faces (about 200 m away).
Please also refer to the supplemental video for visualization
of more results and comparisons.

Qualitative Evaluation We compare our warping algo-
rithm with 4 representative warping or super-resolution al-
gorithms, as shown in Fig. 10. From left to right: a) input;
b) our result; c) EpicFlow [32] which is one of the state-of-
the-art sparse to dense optical flow algorithms; d) typical
coarse-to-fine variational optical flow [7]; e) PatchMatch
super-resolution [3], which is the state-of-the-art example-
based supper-resolution method up to 8×; and f) global ho-
mography warping. Since we mainly care about the warp-
ing performances, we use the feature correspondences com-
puted in iteration 1 of our pipeline as the input for f), and
iteration 2 of our pipeline as the input for c) and our method.

Fig. 10 shows the comparison results. As dis-
cussed above, pixel-based warping strategies including
Epicflow [32] and optical flow [7] can not preserve the im-
age structures. Obvious visual artifacts are introduced in
Fig. 10(c)(d): the fence in (d) is broken after warping, and
the car window and street lamp in (c)(d) are severely dis-
torted. The PatchMatch super-resolution algorithm fails to
recover any details since the image quality of the reference

block is too poor. The baseline method global homography
is insufficient to fit the non-uniform warping field, which
causes misalignments and broken effects such as the walk-
ing person and the street lamps in (f). Compared with other
methods, our algorithm is able to estimate an accurate warp-
ing field while preserving image structure. Qualitative com-
parisons with typical mesh-based warping strategy [25] are
shown in the supplemental video.

Quantitative Evaluation There is no groundtruth for
evaluation of the warping accuracy. However, the over-
lapping regions among local-view cameras provide the op-
portunity to evaluate the warping consistency. Because the
warping of each local-view image are independent, we use
optical flow algorithm [7] to compute the mismathes be-
tween these independent warping results on all the overlap
regions. We calculate the optical flow magnitude distribu-
tions of our proposed method, the Epicflow [32], the optical
flow [7], and the mesh-based warping [25]. For Epicflow
and mesh-based warping, our matching features obtained in
iteration 2 is used. Results in Fig. 9 shows that our method
outperforms other methods, and has about 70% of pixels
with flow vectors less than 5 pixels, which corresponds to
only about 0.5 pixel mismatch on the reference video.

7. Limitations and Future Work
This paper makes an important step towards efficient gi-

gapixel video capture. Based on our proposed multiscale
hybrid camera array setting, we achieve automatic and high
precision stitching of a video that can be zoomed-in for dy-
namic details. Low budget, small pixel bandwidth con-
sumption, parallel processing capability and without the
need of calibration are the main advantages of our sys-
tem. We contribute the first warping algorithm that is ro-
bust to huge resolution gap for outdoor scene appearance.
Although the summation number of all the local-view pix-
els cannot reach Giga level, the moveable camera setting
allows us to capture region-of-interest dynamics and form a
seamless video that has the feeling of gigapixel roaming.

The low resolution of scene background in the final
video can be improved by adding a local-view camera for
scanning the background, such that the background can be
high resolution and update at a comparatively low frame
rate. The exploration of a more adaptive region-of-interest
capture scheme is interesting future work. A potential ap-
plication of this adaptive scheme is in capturing gigapixel
football game video, where the players take only small parts
of the visualization space while the field remains static but
takes up a major part. Undoubtedly, large scale outdoor
surveillance is another important application of our system.
Finally, our architecture enables parallel processing of each
camera, which is promising to be optimized in realtime for
online streaming and interacting applications by resorting
to GPU computing techniques.



(a) reference (b) ours (c) epicflow [32] (d) optical flow [7] (e) PatchMatch SR [3] (f) global homography

Figure 10: Comparison with available warping algorithms. Elliptical regions mark the artifacts.

Figure 11: Zoom in the final composite gigapixel video.
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