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Abstract

This paper presents a method to synthesize a realistic fa-
cial animation of a target person, driven by a facial per-
formance video of another person. Different from tradi-
tional facial animation approaches, our system takes ad-
vantage of an existing facial performance database of the
target person, and generates the final video by retrieving
frames from the database that have similar expressions to
the input ones. To achieve this we develop an expression
similarity metric for accurately measuring the expression
difference between two video frames. To enforce temporal
coherence, our system employs a shortest path algorithm to
choose the optimal image for each frame from a set of can-
didate frames determined by the similarity metric. Finally,
our system adopts an expression mapping method to fur-
ther minimize the expression difference between the input
and retrieved frames. Experimental results show that our
system can generate high quality facial animation using the
proposed data-driven approach.

1. Introduction
Performance-driven facial animation has been in the

spotlight since the 1980s. It refers to the problem of map-

ping facial performance from one identity to another, with

the goal of making the rendered facial animation of the

target identity to be both realistic and consistent with the

source performance.

Although tremendous progress has been achieved in the

past few decades, the problem remains unsolved. Previous

approaches have mainly focused on expression fidelity, that

is, making the rendered facial expression on the target face

to be perceptually close to the input expression of the in-

put face. On the other hand, photorealistic rendering has

been largely ignored, and previous approaches often use a

3D face model as the target avatar. It is unclear how to

render photorealistic facial animations of a real person’s

face, given the performance of another person. Further-

more, many previous approaches heavily rely on additional

information such as markers on the source face [1, 17], or

intensive user interaction for tracking [28, 15]. The applica-

tion range and efficiency of these methods are thus limited.

In this paper, we aim at developing an automatic system

to transfer facial performance in a face video to another per-

son, resulting in a natural-looking video of the target person.

Inspired by the recent data-driven approaches on occluded

face completion [8] and human motion animation [29], our

system relies on an existing expression database of the tar-

get person to achieve this goal. Since the database provides

natural video frames of the target face under various expres-

sions, we can use them as reference to render a new video

that matches with the input performance. However, this is

not a trivial task, given the following main challenges:

1. how to measure the expression similarity between

video frames of different identities;

2. how to effectively search the database to ensure that

the generated video is not only close to the input per-

formance, but also temporally coherent;

3. since the database is limited in size and cannot cover

all expressions in the input performance, how to fur-

ther adjust the expression in a target video frame to

improve its expression accuracy.

Our system employs a set of techniques to address these

challenges. Specifically, we propose a novel metric for mea-

suring the similarity between expressions of different iden-

tities in video. For balancing between temporal coherence

and expression matching accuracy, we first find k-nearest

neighbors from the database as candidates for each input

frame, and solve for the optimal output sequence using an

optimization approach. Finally, to account for some sub-

tle expression difference between each input and retrieved

frame, we propose an expression transfer method and use its

result to further refine the expression of the retrieved frame.

Experimental results show that our system is able to syn-

thesize temporally-coherent, photorealistic facial animation

video that matches well with the input performance.

2. Related Works

This work is related to previous research on facial ex-

pression matching, facial expression retargeting (mapping),
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and video-to-video synthesis.

Facial Expression Matching. Our requirement is to

find the most similar expression, instead of classifying fa-

cial motion into discrete, pre-defined classes. Features

used in expression recognition community, such as Gabor

Wavelets [19], LBP [21] and FACS [9], might provide an

alternative approach to our goal. However, they often fail to

take into account of identity difference. A smile with mous-

tache, for example, is different from another smile without

moustache in terms of LBP feature. Only with plenty of

training examples with and without moustache, the classi-

fiers may tell that the two smiles are the same. Furthermore,

these metrics may not infer a continuous real-valued dis-

tance measure, which means that they are often not accurate

enough to capture subtle expression difference. CERT [14],

for example, only recognizes Action Units of peak expres-

sions well. It is unclear how well it can discriminate subtle

AU movement. In contrast, these two major problems do

not exist in our proposed expression similarity measure.

3D Model-based Facial Performance Retargeting.
There has been extensive work on facial performance mod-

eling and retargeting. In PCA-based models, such as

AAM [4]/CLM [23], 3D morphable model [3], multilinear

model [25, 7], and deformable model [27], generic basis is

learned from large training data by preserving the principal

components. They try to track all expressions robustly at

the cost of giving up the fine details. While in our refine-

ment approach, with two images of similar expressions, the

optical flow between them can better capture the fine de-

tailed expression difference, which leads to more accurate

retargeting result. Blendshape model of a specific character

can be established for realtime animation [26]. However,

the number of blendshapes is a contradiction between cov-

erage of the model and suitability in tracking. Some other

systems [22, 20, 2] try to create textured photorealistic 3D

facial models. However, it is not easy to acquire the fully

textured 3D models.

Image-based Expression Mapping. Some face synthe-

sis systems directly operate on 2D images to achieve expres-

sion transfer. Williams’s system [28] extracts facial features

from the source and target images, and uses the feature dif-

ference to guide the warping. Liu et al. [17] propose an Ex-

pression Ratio Image (ERI) to enhance expression mapping

by capturing the illumination changes. Zhang et al. [30] use

geometry component to compute texture image of each sub-

region by compositing the example face images together.

However, these methods usually cannot deal well with a

large topology change between two images. Our method

overcomes this limitation by retrieving a target face from

the database which has similar expression to the input face.

Besides, these methods usually are labor intensive.

Video-to-Video Synthesis. Our work is also related

to previous video-to-video synthesis systems. Similar to

Retrieval

Warping

Figure 1. System overview. The optical flow between each query

frame and its neutral face is first mapped to the target person,

which is used to perform retrieval from the database. Meanwhile,

the neutral image of the target person is warped to generate an

EMI sequence with the query performance. Finally, the retrieved

sequence is refined by the EMI to synthesize the final result.

our goals, Kemelmacher-Shlizerman et al. [10] utilize a

database to synthesis a new face video of a target person,

driven by a face video of another person. However, their

system mainly focuses on measuring facial expression sim-

ilarity under large pose difference. The final video is simply

created by lining up the individually most similar images,

which may not be temporally coherent. The video face

replacement system [7] replaces the face in a target video

with the face in a source video while maintaining spatial-

temporal consistence. However, it assumes the coarse se-

mantic correspondence and roughly approximate appear-

ance between source and target videos.

3. System Overview
Figure 1 shows the overview of our system. To gener-

ate realistic expressions for a target person, we first capture

a short video of this person performing some basic expres-

sions, such as anger, fear, surprise, sadness, joy, and disgust.

Given a facial performance video of another identity, whom

we call the puppeteer, our method tries to synthesize the

same performance using the database of the target person.

Specifically, for each input frame, we query the database

and find k frames of the target person that have the most
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similar expressions to the input frame, using an optical flow

based similarity metric described in Section 4.1. Instead of

directly taking the most similar frame to form a matched

sequence, as did in the system of Kemelmacher-Shlizerman

et al. [10], we formulate the task of finding the optimal con-

secutive frames as a shortest path problem, as described in

Section 4.2. The obtained sequence contains similar expres-

sions to the puppeteer, and is also temporally coherent.

However, due to the limited size of the database, find-

ing a perfect expression match for every input frame is al-

most impossible, not to mention that some expressions of

the puppeteer may have unique characteristics. To account

for the subtle expression difference between the input frame

and the retrieved frame, we apply an expression mapping

technique to generate another candidate face which we call

the EMI image, as described in Section 4.3. The EMI im-

age usually has more accurate facial expression than the re-

trieved frame, but the facial appearance in it may contain

significant artifacts. In the final step, we combine the EMI

image and the retrieved frame together to generate the fi-

nal output frame, which has both accurate expression and

realistic appearance, as described in Section 4.3.

4. The Algorithm

4.1. Expression Similarity Metric

Given a face image Qe of the puppeteer, our system tries

to find a corresponding face image Te from the database of

the target person, which has the most similar facial expres-

sion to Qe. To achieve this we need a facial similarity met-

ric which can accurately measure the expression difference

between Qe and Te, while ignoring the identity/appearance

difference between the two images.

To develop such a metric, our system uses the neutral

faces of both the puppeteer and the target person, denoted

as Qn and Tn, respectively. Tn only needs to be identi-

fied once when we build the database, and we assume Qn

is marked by the user in the input video. To describe how

the face of the puppeteer changes from Qn to Qe, we can

compute an optical flow field [16] between these two im-

ages, denoted as FQn→Qe ∈ R
m×2, where m denotes all

face pixels in Qn. To remove the global head motion from

the flow field, we estimate a 2D similarity transformation

using the nose region which is mostly invariant to expres-

sion change, and align Qe to the pose of Qn before com-

puting the expression difference. We also normalize the

flow using the width of the face. Similarly, a flow field

F Tn→Te
∈ R

n×2, where n �= m, can be computed between

Tn and Te. However, we cannot directly compare these two

flow fields due to the identity/appearance difference.

To establish an accurate correspondence between the two

flow fields, we first detect facial landmarks only on neutral

faces Qn and Tn, using the standard Active Shape Model

(a) facial markers (b) local regions

Figure 2. Initialization of the neutral face. (a) Green markers are

detected by ASM, and red ones are manually labeled. (b) The eye,

mouth and nose regions are marked in magenta, blue, and green,

respectively.

(ASM) [5], which works particularly well on frontal faces

with neutral expression. However it does not cover the

entire face as needed in the later steps of our algorithm.

We thus manually label more landmark points on the two

neutral faces, as shown in Figure 2(a). We then triangu-

late the face region in Qn and Tn using Delauney trian-

gulation, which leads to a pixel-wise registration function

g : Qn → Tn. Furthermore, since the semantic corre-

spondence between two identities should be invariant to

different facial expressions, it is reasonable to assume that

g′ : Qe → Te, the registration function between two ex-

pression images, approximately equals to g : Qn → Tn.

Given the registration function, for a point �a ∈ Qn which

moves to �a′ ∈ Qe, its corresponding flow vector on Tn is

computed as:

Δ�b = g(�a′)− g(�a), (1)

where�b = g(�a) is the corresponding point of �a on Tn.

By applying this mapping for all face pixels in Qn, we

obtain a mapped flow field F ′Qn→Qe
, which now can be

compared with F Tn→Te
to measure how similar the two

expressions are. As pointed out in previous work [10], the

main source of expression difference comes from the eye

and mouth regions, we thus only use pixels inside these re-

gions to compute the expression similarity (see Figure 2(b)).

A straightforward approach is to measure the expression

difference between Qe and Te by looking at the absolute

flow difference:

de(Qe, Te) = αe

∑

i∈eye

∥∥F ′Qn→Qe,i − FTn→Te,i

∥∥

+αm

∑

i∈mouth

∥∥F ′Qn→Qe,i − FTn→Te,i

∥∥ ,(2)

where the subscription i refers to the ith row in the flow

matrix F . α{e,m} are the weights for the eye and mouth

regions, respectively.

The distance metric in Equation 2 works well in most

cases in our experiments, however we found that it occa-

sionally makes mistakes as shown in Figure 3. This is be-
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(a) (b) (c) (d)

Figure 3. Comparison of expression metrics. (a) Query frame. (b)

The most similar expression chosen by LBP method, which has an

unwanted frown. (c) The most similar expression chosen by the

metric in Equation 2, which has a smile rather than surprise. (d)

The most similar expression chosen by the metric in Equation 4,

which matches well with the query frame.

cause in Equation 2, we only consider the magnitude of

the flow difference F ′Qn→Qe
−F Tn→Te

. However, flow di-

rection usually contains more critical information about fa-

cial expression. For example, smile is always associated

with upward motion of the mouth corners, while cry is usu-

ally accompanied with downward motion of them. This

suggests that the expression in Qe is significantly different

from that in Te if F ′Qn→Qe
has a very different direction

from F Tn→Te , even when the magnitude of the difference

is small. With this observation, we re-design the expression

distance metric as:

db(�u,�v) = βm|�u− �v|+ βo(−�u · �v + |�u||�v|), (3)

de(Qe, Te) = αe

∑

i∈eye

db(F
′
Qn→Qe,i, FTn→Te,i)

+αm

∑

i∈mouth

db(F
′
Qn→Qe,i, FTn→Te,i), (4)

where β{m,o} ∈ [0, 1] are the weights for the magnitude

and orientation terms, respectively, and subjected to βm +
βo = 1. When βo equals to zero, Equation 4 reduces to

Equation 2. The offset |�u||�v| in Equation 3 makes sure that

the orientation term is nonnegative. Note that this distance

metric does not preserve symmetry and triangle inequality.

To make it more mathematically sound, one could compute

the inverse distance de(Te, Qe) and use the average of these

two as the final distance metric. However in practice we do

not find it to be necessary, as de(Qe, Te) can well describe

the facial expression difference between two images with

different identities, and is sufficient for our application.

4.2. Retrieval-based Video Synthesis

Using the similarity metric defined above, a naive ap-

proach for video synthesis is to for each input frame, find its

nearest neighbor in terms of expression in the database, and

stack them together to form the final output video. However,

we found this approach does not work well, as the temporal

coherence of facial expression in the final video is not well

maintained, and the final video often appears to be jittering.

The supplementary material contains videos that illustrate

this problem. Our system employs some additional tech-

niques to solve the temporal coherence problem, as we will

describe in detail in this subsection.

4.2.1 Incorporating Expression Velocity

First, the distance metric defined in Equation 4 only con-

cerns the expression similarity between two faces. However

in video, we also need to care about the velocity of expres-

sion change at each frame. The most similar frame should

be the one whose expression and expression velocity both

agree with that of the query frame. To measure expression

velocity, we simply compute another optical flow between

the current and the next frame in a video sequence. Let Q
(q)
e

be the qth query frame, its expression velocity is computed

as:

dF
Q

(q)
e

= F
Q

(q)
e →Q

(q+1)
e

. (5)

Similarly, for a frame T
(t)
e in the database, we calculate

its expression velocity as dF
T

(t)
e

. Again, due to the identity

and expression difference between Q
(q)
e and T

(t)
e , it is un-

wise to directly compute the distance between dF
Q

(q)
e

and

dF
T

(t)
e

. It is necessary to warp the expression velocity flow

fields to remove the identity difference, as we did in Sec-

tion 4.1. We also need to warp both velocity flow fields to

map them onto the neutral expression to remove the expres-

sion difference between them.

Specifically, for the database frame, we apply the in-

verse optical flow of F
Tn→T

(t)
e

on dF
T

(t)
e

, resulting in the

warped expression velocity flow dF ′
T

(t)
e

that fits with the

neutral expression Tn. For the query frame Q
(q)
e , we apply

the inverse flow of F ′
Qn→Q

(q)
e

computed in Equation 4 on

dF
Q

(q)
e

, resulting in a warped velocity flow dF ′
Q

(q)
e

that is

also mapped to the neutral face Tn. Finally, the expression

velocity difference between Q
(q)
e and T

(t)
e is computed as:

dv(Q
(q)
e , T (t)

e ) = αe

∑

i∈eye

db(dF
′
Q

(q)
e ,i

, dF ′
T

(t)
e ,i

)

+αm

∑

i∈mouth

db(dF
′
Q

(q)
e ,i

, dF ′
T

(t)
e ,i

), (6)

where function db(·, ·) is defined in Equation 3. Combin-

ing Equation 4 and 6 together, the final expression distance

metric for video is defined as:

D(Q(q)
e , T (t)

e ) = γede(Q
(q)
e , T (t)

e )+γvdv(Q
(q)
e , T (t)

e ), (7)

where γ{e,v} ∈ [0, 1] are the weights for the expression

distance and expression velocity distance, respectively, and

subjected to γe + γv = 1.

Figure 4 shows an example which demonstrates that

when the expression is subtle, incorporating the expression

60



(a) (b) (c) (d)

Figure 4. Illustration of the importance of using expression veloc-

ity. (a) Current query frame with expression velocity drawn in red.

(b) The next query frame with a subtle smile. (c) The most similar

expression chosen by the metric in Equation 4, which has a subtle

sadness. (d) The most similar expression chosen by the metric in

Equation 7, which has the right subtle smile.

velocity into the metric can help the system better capture

the expression change.

4.2.2 Optimization-based Retrieval

The improved expression similarity metric alone cannot

completely solve the temporal coherence problem. Our sys-

tem thus employs an optimization-based retrieval approach

to further improve the temporal coherence of the synthe-

sized sequence.

For each query frame, we first extract not one, but k-

nearest neighbors (k = 20 in our system) from the database,

which we call the candidate frames, using the complete dis-

tance metric defined in Equation 7. By placing k candidate

frames in a column at the timestamp of each frame, we build

a directed acyclic graph as shown in Figure 5. Directed

edges only connect candidates on adjacent frames. Let V
(q)
i

be the ith candidate at time q. We define the length (or cost)

of the directed arc r = (V
(q)
i , V

(q+1)
j ) as:

L(r) =D(V (q)
i , Q(q)

e ) +D(V (q+1)
j , Q(q+1)

e )

+λ exp(−(T (V (q+1)
j )− T (V (q)

i )− μ)2/σ2),(8)

where T (·) indicates the timestamp of an input frame. By

minimizing the timestamp difference of adjacent frames,

the last term in Equation 8 encourages consecutive frames

in the database to be chosen as the matched frames to main-

tain temporal coherence. The temporal scale variable μ is

used to compensate for the difference in motion speed be-

tween the query and database sequences. μ is set to 1 if the

query sequence has roughly the same motion speed as the

database sequences, and is set to a larger number if the mo-

tion in the query sequence is faster than that of the database

sequences, and vice versa. σ is the bandwidth and λ is the

weight for the temporal term.

The temporal term in Equation 8 is a L2 norm which

allows small timestamp shift, but penalizing heavily on

large shift. Since small shifts are allowed, it allows certain

Query
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Graph
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Figure 5. Directed graph for retrieval.

amount of temporal scale changes as well. This is evidenced

by our query sequence 1 shown in Figure 7, which contains

both slow mouth-opening expression and fast pouting ex-

pression. Our system handles both cases well. In addition,

μ can also be adjusted automatically at different time of the

video according to speed of query motion.

Let P
V

(1)
i →V

(τ)
j

be the path connecting the starting node

V
(1)
i and the ending node V

(τ)
j , where i, j ∈ {1, 2, . . . , k}.

Among all possible paths from the first to the last frame,

we find a path with the shortest length. This optimization

objective is formally formulated as:

Popt = argmin
i,j

argmin
P

V
(1)
i

→V
(τ)
j

∑

r∈P
V

(1)
i

→V
(τ)
j

L(r). (9)

This problem can be effectively solved using Dijkstra’s al-

gorithm with Fibonacci heaps [6]. All frames connected by

the optimal path Popt form the retrieved sequence.

Our optimization-based formulation draws on prior work

for creating temporal coherent animation [12, 13, 11]. Tem-

poral coherence and semantic correspondence are both in-

corporated in our approach.

4.3. Expression Refinement

The previous retrieval result has two drawbacks. First,

since the size of our database is limited, retrieved frames

may not contain exactly the same expression as the input se-

quence. Second, database frames are not perfectly aligned,

so the retrieved sequence contains some small amount of

temporal jittering. To remove these artifacts, our system

employs an additional expression refinement component.

The key idea of the expression refinement step is that

given Qn and Qe, the neutral and expression frames of the

puppeteer, and Tn, the neutral frame of the target person,

we can directly extract the expression from the two source

images and map it to Tn to synthesize a new face TQe
. This

synthesized face, which we call the expression mapping im-

age (EMI), has the desired expression, but may not have

realistic texture, especially when the expression change be-

tween Qn and Qe is large. On the other hand, the retrieved

frame has realistic appearance, but the expression does not

61



(a) (b) (c) (d)

Figure 6. Expression refinement. (a) Query frame. (b) Retrieved

frame. (c) Expression mapping image. (d) Final result.

match with Qe perfectly. Combining the EMI and the re-

trieved frame together, we can generate a final image that

has both realistic appearance and accurate expression that

matches well with the puppeteer.

Specifically, we first warp Tn by transferring the optical

flow between Qn and Qe to the target frame. Given point

�a ∈ Qn, �a′ ∈ Qe, and �b ∈ Tn (�b = g(�a) as in Equation 1),

we compute the color of point�b′ ∈ TQe
as:

c�b′ = c�b
c�a′

c�a
, (10)

where c{�a,�a′,�b,�b′} are the color values (YCrCb color space is

used in our system) of the point �a, �a′,�b and�b′, respectively.

Here, we use the ratio c�a′/c�a to modulate the color c�b, as

was done in the ERI approach [17]. In practical implemen-

tation, to avoid having a non-integer coordinate for �b′, we

compute the expression mapping in the reversed direction.

We start from an integer pixel �b′ ∈ TQe
, and find its cor-

responding point �a′ ∈ Qe as �a′ = g−1(b′). The flow Δ�a′

obtained by calculating FQe→Qn
gives the position of point

�a. Through the registration function, we obtain the position

of point �b = g(�a) ∈ Qn. Then the color of point �b′ can be

calculated by Equation 10.

Finally, we compute the optical flow between the EMI

and the retrieved result at each frame time, and warp the

retrieved image towards the EMI result using the flow. As

shown in Figure 6, the final synthesized frame has not only

the realistic appearance inherited from the retrieved frame,

but also the correct expression that matches well with the

query frame, inherited from the EMI image.

5. Results and Discussion
5.1. Experiment Setup

We evaluate the system on three databases. Two of them

were captured by ourselves, for which the two subjects, one

male and one female, were asked to perform 6 basic ex-

pressions: anger, disgust, surprise, fear, happiness and sad-

ness. Each database was captured at 25fps and consists of

about 1500 frames. The third database is subject S130 from

Extended Cohn-Kanade Dataset (CK+) [18]. 11 small se-

quences (220 frames in total) of subject S130 were pooled

together to form the expression database. In all experi-

ments the parameters in our algorithm were fixed as fol-

lows: αe = 0.6
ne

, αm = 0.4
nm

, βm = 0.9, βo = 0.1, γe = 0.9,

γv = 0.1, k = 20, λ = 0.1, μ = 1, σ = 2, where ne and

nm are the numbers of pixels in the eye and mouth regions

of the target neutral face, respectively.

5.2. Results and Evaluation

Figure 7 shows the synthesized results of the target sub-

ject T1 (male) and T2 (female), driven by an input se-

quence. Note that our system not only can synthesize re-

alistic performance when the input expression is in the

database, such as smile and surprise, but also can synthesize

new expressions that are not covered in the database, such as

a pouting mouth with closed eyes. Meanwhile, the final syn-

thesized video is also temporally coherent. Figure 8 shows

the synthesized result of subject S130 from CK+ database,

driven by another sequence. Results show that our system

works well even with a small database. The complete set of

video, including an additional fast talking retargeting result,

can be found in the supplementary material.

To evaluate the quality of our synthesized results, we

performed a user study with 34 participants. Each partic-

ipant was shown four videos obtained by frame-by-frame

query approach using LBP features in [10], EMI introduced

in Section 4.3, our retrieval strategy, and our entire algo-

rithm. Each video presents the query and a result side by

side. In the experiment, participants were asked to rate how

good the facial expression in each result looks based on re-

alism and consistency with the driving performance, on a

scale from 5 (very good) to 0 (not good at all). Table 1

states the average scores for 3 target subjects. Participants

found that our final result is the best one and our retrieval

strategy outperforms the method proposed in [10].

T1 T2 S130

LBP-based retrieval [10] 1.20 1.50 1.38
Our retrieval 2.49 3.00 2.56
EMI 2.89 1.91 3.35
Our entire system 4.02 4.56 4.08

p-value 0.002 0.005 0.0001
Table 1. User study results. The results are all statistically signifi-

cant with the one-way ANOVA p-value < 0.01.

5.3. Limitations

Our current system is designed only for frontal facial

expression synthesis. Extending the system to work under

large rotation angles is possible, by capturing the database

of the target person using a sparse camera array. In this

case we need to estimate both the expression and the 3D

pose of the face from the input frames. Furthermore, view

morphing technique [24] is needed to interpolate faces be-
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Figure 7. Result of query sequence 1 performed on target T1 and T2. (a) Common query frames. (b) (first row) Retrieved and EMI frames

(left and right, respectively); (second row) Final synthesized frames of target T1. (c) Retrieved, EMI, and final frames of target T2.

tween different viewpoints to generate facial expressions at

desired poses.

Another limitation is that when the expression is ex-

treme, traditional optical flow methods cannot accurately

capture the expression difference. Besides investigating

better facial flow techniques, another solution is to use mul-

tiple pre-aligned anchor facial images for each character in-

stead of using one neutral face in our current system.

6. Conclusion
We proposed a data-driven approach for synthesizing a

facial animation of a target person driven by a facial per-

formance video of another person. Our system employs a

novel spatial-temporal expression distance metric that can

accurately measure expression similarity of different peo-

ple in video. We also propose a shortest path optimization-

based retrieval strategy to balance between expression sim-

ilarity and temporal smoothness in the final video. The ex-

pression similarity is further improved by warping the re-

trieved video frames towards those created by direct ex-

pression mapping. User study results have shown that our

system can generate high fidelity and temporally-coherent

facial animation.
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