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Abstract

We present a novel phase-based approach for recon-
structing 4D light field from a micro-baseline stereo (LfS)
pair. Our approach takes advantage of the unique prop-
erty of complex steerable pyramid filters in micro-baseline
stereo. We first introduce a disparity assisted phase based
synthesis (DAPS) strategy that can integrate disparity infor-
mation into the phase term of a reference image to warp it
to its close neighbor views. Based on the DAPS, an “analy-
sis by synthesis” approach is proposed to warp from one of
the input binocular images to the other, and iteratively op-
timize the disparity map to minimize the phase differences
between the warped one and the ground truth input. Fi-
nally, the densely and regularly spaced, high quality light
field images can be reconstructed using the proposed DAPS
according to the refined disparity map. Our approach also
solves the problems of disparity inconsistency and ringing
artifact in available phase-based view synthesis methods.
Experimental results demonstrate that our approach sub-
stantially improves both the quality of disparity map and
light field, compared with the state-of-the-art stereo match-
ing and image based rendering approaches.

1. Introduction

As an alternative to traditional 2D images, 4D light
fields [14, 8] allow a wide range of applications by coding
the spatial and angular information of a scene, which
implicitly captures 3D scene geometry and reflectance
properties. Despite its rapidly gaining popularity, high
quality light field acquisition from real scenes is still an
open problem. Expensive and sophisticated camera arrays
have been proposed to capture dynamic light fields [31],
while a public repository for static light fields was cap-
tured with a custom-made gantry system using a single
camera [1]. Integrating a microlens array [20] in a camera
system has recently enabled consumer-grade light field cap-
ture (e.g. the Lytro camera), and a recent dictionary-based
compressive sensing approach has been introduced [17];
however, the quality of a captured light field is still a
tradeoff between spatial and angular resolution.
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Figure 1. We reconstruct densely spaced 4D light field from a
micro-baseline stereo pair. Our LfS method iterates between dis-
parity estimation and view synthesis in the phase domain using a
complex steerable pyramid filter. The final disparity map is used
in disparity assisted phase based synthesis of the target 4D light
field with expanded view points. The EPI image of our recon-
structed light field is free of ringing artifacts and shows more clear
structures, compared with [4].

We propose a novel phase-based light field synthesis
architecture that we called LfS that allows high quality
densely sampled light fields to be reconstructed from a
micro-baseline stereo pair. Micro-baseline in this work
refers to a stereo image pair with a disparity less than 5
pixels [11]. Such an image pair can be efficiently captured
by vibrating a static camera or applying small motion to a
handheld camera [32]. Inspired by the recent researches on
phase based video magnification [27] and view expansion
for generating automultiscopic content [4], we bring the
complex steerable pyramid filter to the problem of light field
reconstruction from a micro-baseline stereo pair. The com-
plex steerable pyramid filter possess a particular property
that most other filters do not have, i.e. it is Gabor-like (each
decomposed band has both limited spatial and frequency
support), translation invariant and alias-free, which allows
for perfect reconstruction. Because of this property, it is
especially suitable for phase domain reconstruction of im-
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ages that are very close to the input. The variance between
views in a densely sampled light field is very small given
a Lambertian scene assumption, which makes the complex
steerable pyramid filter a good choice to reconstruct light
field from micro-baseline stereo pair.

One of the main issues of the state-of-the-art phase based
view expansion approach [4] is that its output suffers from
ringing artifacts, as shown in the upper right of Fig.1. More-
over, it cannot satisfy the basic light field structure, i.e.
the resulting LF is not structured with equal steps between
views. As shown in the bottom right of Fig.1, the result-
ing epipolar-plane image (EPI) from the view expansion
approach [4] contains obvious serrated structures, which
indicates inconsistent disparity across views. Against this
backdrop, we explicitly leverage disparity information un-
der a phase based processing framework and propose a dis-
parity assisted, phased based synthesis (DAPS) strategy to
calculate the phase differences caused by the disparities,
and compensate those into each decomposed bands. With
a plausible disparity information, our DAPS approach can
synthesize disparity consistent light fields, as shown in the
bottom left EPI of Fig.1.

Furthermore, to have high quality disparity information,
we take advantage of the property that the complex steer-
able pyramid allows a faithful reconstruction of close views
in the phase domain, and propose an analysis by synthesis
scheme to iteratively optimize the disparity information be-
tween the two input views in the micro-baseline pair, so that
the phase terms of the right view synthesized from the left
are well matched. Fig.1 also demonstrates the significant
quality improvement of the disparity map.

We evaluate the proposed method quantitatively and
qualitatively in terms of both disparity quality and light field
image synthesis quality, which outperforms the state-of-the-
art stereo matching method [22] and image based rendering
method [21], respectively. Our recovered light fields are
successfully used in novel view rendering and scene refo-
cus, and may also be used as input for light field displays
(see [18] for a recent overview of automultiscopic display
technology). We hope that this work will open the door
for further analysis and processing of light fields using a
phase based framework. The source code of our work will
be made public.

2. Related Work
Densely sampled light fields are important for many

vision algorithms [15] and applications [10, 30]. Here we
review light field acquisition methods and other techniques
related with this work.

Dense Light Field Acquisition. Light field acquisition
requires special systems and densely sampled ones are
much more expensive to acquire. For consumer-grade
acquisition systems like the Lytro (based on the seminal

work by Ng [20]) and sparse sensing acquisition systems
[17], the trade off between spatial and angular resolution
exists. A dimensionality gap has been identified in light
fields of Lambertian scenes with modest depth continuities
[19, 13], which indicates redundancy and sparsity in the
dense light field structure. Levin and Durand [12] leverage
this dimensionality gap in light fields with specific priors,
and reconstruct light fields using focal stack images.

Image-based Rendering. Most light field synthesis
methods fall in the the category of image-based rendering
(IBR), the core task of which is to synthesize new views
given set of images. According to [25], image-based
rendering algorithms can be categorized according to the
dependency on geometry. Methods that use explicit geom-
etry, such as view-dependent texture mapping (VDTM),
such as [3], 3D warping [16], or layered depth images [24],
are sensitive to inaccurate depth or disparity estimation,
yet high quality depth maps are hard to acquire as well.
Other methods, such as light field rendering [14, 2] require
little or even no geometry information, but need a dense set
of images as input. Recently, Pujades et al. [21] propose
a view synthesizing method by optimizing a novel cost
function with a Bayesian formulation, which improves
both the spatial and angular disparity of light fields. Such
methods, though greatly reduce the sampling rate for
a dense light field, still require multiple input views to
overcome the geometry uncertainty.

Phase-based Algorithms. Previous works [23, 7]
have shown that the phase information of complex gabor
filtering can be used to compute disparities and optical flow.
Since the phase term is assumed to be linear in terms of
displacement, the result suffers from the inaccuracy of this
assumption. Sanger [23] gives a error analysis of disparity
estimations using Gabor filters. Recently, Didyk et al.
[4] use the phase information from a complex steerable
pyramid decomposition [26] to expand view positions
for 3D displays. Their method does not require disparity
estimation, but results suffer from synthesized ringing
artifacts and fail to follow the basic light field structure
because of phase warping.

In contrast, our method is robust to low quality disparity
estimations, follows the disparity consistency required by
light field structures. In addition, our method is able to
render good quality disparity maps and light field images
from only two very small baseline images.

3. Overview
The input to our algorithm is a micro-baseline stereo

pair after epipolar rectification [6]. Such data can be
conveniently captured using a closely packed binocular
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Figure 2. The pipeline of the whole proposed framework. (a) and (b) The two input images are decomposed using the complex steerable
pyramid. (c) The disparity information is integrated into each band. (d) Synthesized bands for the target views (choose between the right
view and the novel views). (e) Switches represent the choice between disparity refinement (orange lines) and novel view synthesis (green
lines). (f) The disparity is iteratively refined and the final result is used to generate a mapping function for the novel views. (g) The band
of the right view is used as ground truth, and the phase difference is computed. (h) Synthesis of novel views in the light field using DAPS.

camera or from images captured through tiny horizontal
translation of a single camera. We first compute a raw
disparity map between the two input images using an
available dense stereo matching algorithm [22]. We then
iteratively optimize the disparity map so that the difference
between the input right view and the synthesized right
view image is minimized. The key components of this
optimization are a disparity-assisted, phase-based synthesis
(DAPS) module and a phase-based disparity refinement
module. The light field images are finally synthesized using
our proposed DAPS algorithm.

As shown in Fig.2, we decompose the left view and
right view using a complex steerable pyramid (Fig.2(a) and
Fig.2(b)). By integrating phase and disparity information
(Fig.2(c)) in different bands of the pyramid, our DAPS al-
gorithm is able to synthesize novel views with sub-pixel ac-
curacy by calculating the corresponding bands of the syn-
thesized view (Fig.2(d)). This accuracy enables disparity
refinement (Fig.2(f)) since the systematic error introduced
in the view synthesis is relatively small compared to dis-
parity errors. Then the phase difference between the syn-
thesized bands and the corresponding ground truth bands is
calculated (Fig.2(g)). Using cosine fitting, the phase differ-
ence is converted to estimated disparity error and is added
to the initial estimation. Since the phase difference is noisy
in nature, a filtering process [9] is required for the disparity
estimation before it can be used in the new iteration. The
iteration stops once the disparity improvement is lower than
a threshold, and light field images are synthesized based on
the optimized disparity map using DAPS (Fig.2(h)).

The advantages of our synthesis method can be inter-

(b)(a)

Figure 3. An illustration of the advantages of our method.(a) A
non-bandlimited signal (blue) shifted by 0.5 pixel (red) by apply-
ing Fourier Shift theorem. (b) The same signal (blue) shifted by
0.5 pixel using our DAPS method (red). Note here how our result
approximates the original high frequency signal without obvious
ringing artifacts compared with (a).

preted in both the spatial and frequency domains. Accord-
ing to the Fourier shift theorem for discrete signals, adding
an extra phase would accurately shift the signal by subpixel
displacement if the input signal is band limited. However,
most images are not band limited signals and adding the
phase term in the Fourier domain will cause artifacts be-
cause of aliasing. Instead, we decompose the image into
different band limited sub-bands using the complex steer-
able pyramid, and then shift all the bands. The only excep-
tion is the high residue band that contains a high frequency
component and is not band limited. However, since most
of the bands are accurately shifted, the reconstructed image
would have less ringing artifacts overall. Fig.3 provides a
simple illustration. We therefore decompose the input sig-
nal into different band-limited bands and apply the Fourier
shift theorem to each band. The shifted signal can be recon-



structed by collapsing all bands. In the spatial domain, this
process can be intuitively interpreted as moving the image
by patches with different sizes. A pixel in the target image
is the weighted average of different image patches covering
that pixel. This averaging process assures that our method
is insensitive to bad disparity estimations.

4. Background
The first step of the proposed pipeline is to decompose

the two input images using the complex steerable pyramid
[26]. For the sake of clarity, we first review its mathemati-
cal background. The complex steerable pyramid is first and
foremost a set of Gabor-like filters, which have limited sup-
port in both the frequency and spatial domains [5].

Gabor and Gabor-like filters. Previous phase-based
methods [23, 7] use Gabor or Gabor-like filters to extract
features, or calculate disparities and flow vectors. A Gabor
filter is defined as a Gaussian-enveloped sinusoidal plane

wave in the spatial domain, i.e. e−
x2

2σ2 cos(ω · x), where x
stands for the 2-D position vector and ω is the 2-D spatial
frequency vector. For phase-based methods, complex Ga-
bor filters are frequently used, which only include the pos-
itive frequency components of regular Gabor filters. In the
frequency domain, the complex Gabor filter can be viewed
as a 2-D Gaussian centered at frequency ω. Since com-
plex Gabor filters have limited frequency support, a given
image can be decomposed by convolving complex Gabor
filters tuned at different frequencies to cover all frequency
components of the image. However, such decomposition
does not support perfect reconstruction since aliasing exists
between filters tuned at different frequencies.

Complex Steerable Pyramid. The complex steerable
pyramid decomposes an image into sub-bands with differ-
ent scale and orientation by a set of Gabor-like filters. We
denote the frequency response of a given image I at band
i as Bi

I(ω) = Iω(ω)Gi(ω), where Gi(ω) is the filter for
band i in the frequency domain and Iω denotes the Fourier
transform of I . All the bands, except for the high residue
band, are band-limited since the corresponding Gi(ω) has
limited frequency support. In addition, the complex steer-
able pyramid is translation-invariant, which means that a
translation in the input image causes the same translation
in all of its bands. That is, if the input image becomes
I(x + ∆x) instead of I(x), all the biI(x) will become
biI(x + ∆x), where biI is the inverse transform of Bi

I .
Besides, unlike Gabor decomposition, the complex steer-
able pyramid is designed to be self-inverting, and has non-
aliased sub-bands since the aliasing terms between different
bands cancel when collapsing the pyramid [5]; therefore the
reconstruction can be noted as:

Iω(ω) =

N∑
i=1

Bi
I(ω)Gi(ω) =

N∑
i=1

I(ω)G2
i (ω), (1)

where N is the number of bands.

5. Disparity Assisted Phased based Synthesis
Given a rectified stereo pair l(x) and r(x), a disparity

map dr(x) from l(x) to r(x) can be initialized by avail-
able stereo matching algorithms (we use [22]). Note that
the direction of dr(x) is horizontal since the given pair is
rectified. To synthesize a target view n(x), which lies in the
same image plane (light field plane) as the stereo pair, a cor-
responding 2D disparity estimation d(x) is first calculated
by αdr(x)x̂ + βdr(x)ŷ, where x̂, ŷ are unit vectors for x
and y axis; α, β are two arbitrary constants, controlling the
novel view’s position in the 2D plane. Here, it should be
noted that in the disparity refinement step, the target view
we synthesize is the right view r(x), while in the final light
field synthesis step, it is the novel views in the light field.
The disparity d can be viewed as a pixel-wise mapping
function, i.e. l(x) = n(x + d(x)). For simplicity, we use
f(x) = x + d(x) to denote the mapping function. It is im-
portant to note that f may not be invertible because of the
existence of occluded points in n(x) or in l(x).A simple il-
lustration can be found in Fig.4(c). In the following, for the
sake of clarity, we assume that a bijection mapping func-
tion of f and f−1(x) exists, and formulate our disparity as-
sisted phase based view synthesis strategy. Fig.4(b) shows
an example of a monotonically increasing function that sat-
isfies this assumption, and Fig.4(a) shows its inverse func-
tion. Later, we will discuss the artifacts caused by breaking
this assumption and how to remove them.

5.1. Formulation

According to the above assumption, a specific band bin in
the complex steerable pyramid of the target view n can be
derived by:

bin(x) = n(x) ∗ gi(x) =
∫
n(k)gi(x − k) dk, (2)

where gi is the decomposition filter of band i in the com-
plex steerable pyramid. Since l(x) = n(f(x)), we have
l(f−1(x)) = n(x) and Eqn. 2 becomes:

bin(x) =

∫
l(f−1(k))gi(x − k) dk. (3)

By representing l by its Fourier transform L(ω), the above
equation becomes:

bin(x) =
1

2π

∫
L(ω)

∫
gi(x − k)eiω·f

−1(k) dk dω. (4)

By denoting k′ = f−1(k), we have

1

2π

∫
L(ω)

∫
gi(x − f(k′))eiω·k

′ d(f(k′))

dk′
dk′ dω. (5)



Figure 4. An illustration of f , f−1, x and k0. f denotes the
forward mapping function, which maps pixels from the reference
image to the target image. (a) f−1 is the inverse mapping function.
(b) x denotes the pixel positions in the target image and k0 is its
corresponding pixel in the reference image. The segment is the
approximation used to derive Eqn.6, which is centered at k0 with
a slope of 1. (c) A illustration of f when occlusion regions exists.
Region 1 denotes the newly occluded region in the target view, and
region 2 denotes the disoccluded region.

Since gi is limited in the spatial domain, with a given x,
gi returns non-zero values only when f(k′) approximates x.
As shown in Fig. 4(c), we find a k0 = f−1(x) that satisfies
f(k0) = x, so f(k′) can be approximated as d(k0) + k′,
which is a linear approximation to the function f(x) cen-
tered at k0. Note that the accuracy of this approximation
is determined by the spatial bandwidth of gi. Under this
approximation, d(f(k′))

dk′ becomes 1, and Eqn.5 turns to

bin(x) =
1

2π

∫
L(ω)

∫
gi(x − d(k0)− k′)eiω·k

′
dk′ dω.

(6)

Substituting x − d(k0)− k′, we get

bin(x) =
1

2π

∫
L(ω)Gi(ω)eiω·d(k0)eiω·x dω, (7)

where d(k0) is already known, and the novel view is syn-
thesized by collapsing all the bands bin.

Eqn.7 interprets the advantages we stated previ-
ously. First, since Gi(ω) has limited frequency support,
L(ω)Gi(ω) is therefore band-limited. By adding an ex-
tra phase term eiω·d(k0) to L(ω)Gi(ω), we can effectively
shift the inverse Fourier transform of L(ω)Gi(ω), which is
bil (the corresponding band of the left image), accurately by
a subpixel displacement. Therefore, we avoid shifting the
given image directly but shift its bands instead, since this
band shift is accurate and the bands can be reconstructed
perfectly. Second, since we are shifting bil , which has differ-
ent scales, we can interpret our method intuitively as mov-
ing small patches of the given image to the desired position.
A pixel in the target image is a weighted average of all the
patches that contain it.

-9

-4

1

5

10

15

(b)(a)

(d)(c) (f)(e)

Figure 5. Illustration for artifacts removal when f(x) is along the
baseline.(a) The line where the example f(x) is defined. (b) The
gradient of f(x). Spikes above 1 indicates a disoccluded region,
and spikes below 1 indicates a newly occluded region. The de-
viations from one indicates the size of the region. (c) Modifica-
tions(green) made to f(x) in disoccluded regions. (d) Modifica-
tions(green) made to f(x) in newly occluded regions. (e) New
view synthesized without artifacts removal, with artifacts marked
in the red ellipse. (f) New view with artifacts removal.

5.2. Artifacts Removal

Regions where f−1(x) is not a bijection mapping would
cause artifacts, since d(k0) itself is not well defined. An-
other more intuitive explanation is that since we are moving
pixels as patches, at significant disparity discontinuities, the
image is locally stretched when the region is disoccluded
and contracted when the region is newly occluded.

To remove those artifacts, we process the disparity
estimation by the following procedure before synthesizing.
We first detect those regions that are larger than a user
specified size (1.5 pixels by default). To detect those
regions, the gradient of f(x) and its direction are computed.
Note that if there is no occlusions between the reference
and target images, the disparity should be continuous and
smoothly varying, therefore the gradient of f(x) should
be around 1 without significant spikes. If the gradient has
spikes that deviate 1 pixel from the user-specified size,
a region of occlusion is located at the spike position, as
shown in Fig.5(b). Pixels within the region are assigned the
same disparity values as the nearest foreground content (a
simple illustration showing that f(x) is horizontal can be
found in Fig.5). By doing so, the background content is
stretched to fill in the disoccluded regions and contracted in
the occluded regions, therefore the artifacts are effectively
removed.

6. Disparity Refinement

Our synthesis method shares a common weakness with
others depth-based rendering methods: The inaccuracy of
the disparity estimation would cause the synthesis result
to be inaccurate. Therefore, it is crucial to have a good
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Figure 6. Disparity refinement. (a) The phase difference between
the synthesized band and the corresponding band of the target im-
age, note that the phase difference is very noisy. (b) The estimated
disparity error by cosine fitting, which greatly reduce the noise in
(a). (c) The ground truth disparity error, note its similarity to (b).
(d) The refined disparity before filtering. (e) A zoom-in on the re-
fined disparity after filtering. (f) A zoom-in on the initial disparity.

disparity estimation from the given stereo pair. However,
when the the baseline of the given pair is very small, an
accurate disparity estimation becomes very challenging.
Our disparity refinement method greatly improves the
initial disparity estimation and has sub-pixel accuracy,
which enables us to synthesize high quality novel views.

We assume that in Eqn.7, G(ω) can be approximated by
a complex Gabor filter tuned at frequency ω0. Therefore,
similar to traditional phase-based methods [23, 7], we first
set the target image to be the right view, i.e. set d = dr,
and then approximate Eqn.7 by:

bin(x) =
1

2π
eiω0·dr(k0)

∫
L(ω)G(ω)eiω·x dω (8)

We also assume that there exists an accurate disparity
dtrue that maps the left image to the right image. Similar to
the above equation, we can note:

bir(x) =
1

2π
eiω0·dtrue(k0)

∫
L(ω)G(ω)eiω·x dω. (9)

Since the synthesized band bin and the ideal corresponding
band bir of the right image are known, the disparity esti-
mation error dtrue − dr can be calculated from the phase
difference between bin and bir(x). Traditional phase-based
methods estimate the true disparity dtrue directly from
the phase difference in the corresponding bands of the
left and right images. However, this estimation has three
major limitations: First, the disparity has to be small

enough, so that the corresponding points fall in the spatial
bandwidth of the filter and the phase term does not wrap
up; Second, the phase response is sensitive and unreliable
when the magnitude of the band approaches zero, since
small variations of the norm around zero would cause
phase variations of ±π. And third, the approximation is not
accurate and therefore introduces significant noise to the
estimated disparity. An illustration of this inaccuracy can
be find in Fig.6(a).

Our disparity refinement method circumvents those
limitations. We first synthesize the bands of the right
image using the initial disparity estimation to make sure
that the disparity between them is small enough. We then
compute the phase difference in 16 different orientations
at the highest level, since the lower levels are decimated
and therefore the estimated disparity has to be up-sampled,
which introduces significant inaccuracies. For each pixel
at a specific band, we measure the confidence of its phase
term by the value of its magnitude term, where larger mag-
nitude would infer a more reliable phase. Therefore, for
each pixel, we pick 8 phase from 16 orientations with the
largest corresponding magnitudes and compute the phase
differences. Since the given images are rectified, which
means that d and dture have only horizontal component,
the phase difference can be written as ω0cos(θi)derr,
where derr stands for dtrue − dr, and θi is the orientation
angle for band i. We then compute derr by cosine fitting
with minimum square error. A refined estimation is
calculated by adding derr back to the initial estimation. To
reduce the introduced noise, we simply smooth the refined
estimation by guided filtering [9] using l(x) as reference.
An illustration can be found in Fig.6.

When complex steerable pyramid filters are approxi-
mated by Gabor filters, we assume ω0 to be the frequency
where the pyramid filters have the highest frequency re-
sponse. In practice, this approximation would result in
a derr smaller than expected, and therefore we iteratively
refine our disparity estimation until convergence. A con-
vergence analysis can be found in supplementary materi-
als. This refinement works because our synthesize method
DAPS has sub-pixel accuracy so that the systematic error
introduced in warping can be neglected compared with the
disparity estimation error.

7. Results
We evaluate our LfS method with current state-of-the-

art methods in terms of disparity consistency, accuracy of
the novel synthesized views, and ability to recover disparity
maps from very close viewpoints.

Experiment setup In all the experiments, we set the left
image as reference to generate novel views. Although our



Figure 7. A zoomed in comparison of our result and Pujades et al. [21]. The results from [21] and the ground truth images have the
same view points as our α = 4 results. Out result is more accurate and contains less artifacts. Full resolution images can be found in
supplementary martials.

Figure 8. A comparison of the EPI image from the generated light
field. (a) EPI image using our method (b)EPI image by Didyk
et al.[4] Note that our result is sharper and shows a much clearer
structure.

method is capable of synthesizing a 4D light field, we con-
strain the novel view points to be collinear with view points
of the given stereo pairs for simplicity and comparison pur-
poses. That is, according to our previous formulation, we
set the corresponding disparity d for synthesis to be −αdr,
where dr is the disparity estimation of the given image
pair. α is a constant that controls the distance between
the synthesized view and the reference image. The minus
sign denotes the novel view is set in the opposite direction
to the reference image than the right image. To validate
our algorithm, we use both synthetic and real scenes from
the HCI datasets [29], Stanford light field datasets[1] and
small motion datasets [32]. A quality evaluation of gener-
ated 4D light field can be found in supplementary materials.

Synthetic Scenes Real-World Scenes
α still life buddha maria couple truck gum
1 34.81 44.71 40.81 32.07 37.79 40.22
2 32.31 41.34 39.15 29.61 36.01 39.15
3 30.39 38.54 37.63 28.21 34.37 35.34
4 28.96 36.81 36.69 27.14 32.27 33.06

[21] 30.45 42.37 40.06 28.50 33.78 31.93
[4] 28.16 42.66 39.05 29.85 36.97 37.45

Table 1. Accuracy evaluation of our method for both synthetic and
real scenes. The reference result is given by Pujades et al.[21] with
estimated disparity from the entire light field, and available phase
based view expansion approach [4]. The quality of the synthesized
views is measured by the PSNR against the ground truth image.
The best value for each scene is highlighted in bold. Only the
best results of [4] are listed in the table. Our method performs
consistently better when α is small.

In the first set of experiments, we generate 26 views with
identical spacing by setting α from 0.3 to 7.8 linearly. We
compare our resulting EPI image with the one by Didyk et
al.[4].As shown in Fig.8, our method generates highly lin-
ear EPI images and therefore follows the disparity constrain
of light field.

In the second set of experiments, we first compare our
results qualitatively by generating views with different α
and compare with the ground truth views and results from
state-of-art image-based rendering algorithm[21].A set of
zoomed in images are shown in Fig.7. Then we evaluate
our method quantitatively by using 2 nearby views in the
light field as input and synthesize the same view (center
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Figure 9. Experiment using micro-baseline images from a data set
of [32]. The input images are captured by a handheld camera with
tiny hand motion. (a) Reference frame. (b) Disparity estimation
result from [32]. Note that the input to their algorithm is a 100-
frame video, while we only use a stereo pair. Circled regions are
obvious wrong estimations affected by the color of the reference
image. (c) Our disparity estimation. (d) A synthesized view using
our disparity estimation in (c) with α = 4. (e) The same view
synthesized using method from [4]. (f) Zooming in showing the
detailed differences, with upper from (e) and bottom from ours (d).

of the light field) with different α. We evaluate our accu-
racy by calculating PSNR between ground truth view and
the synthesized views and use the results from Pujades et
al. [21] for comparison.The results are shown in Table 1.
It is important to note that Pujades et al. [21] use multi-
ple input views and a depth estimation from a state-of-art
light field depth estimation algorithm [28]. Even with just
a stereo pair as input, our method is more accurate when
synthesized view point is close to the input(small α).The
state-of-art phase-based method given by Didyk et al.[4] is
also used as reference.

We also compare the quality of our disparity map
with the result of state-of-art algorithm for small motion
videos [32]. We use two frames from an input video and
rectify the frames with an uncalibrated rectification algo-
rithm [6]. Our estimated disparity, shown in Fig.9(c), seems
initially less pleasant because of large textureless regions
and inaccuracies from rectification. However, the result by
Yu and Gallop [32]contains large wrongly estimated regions
due to the dense reconstruction process, where the color
information of the reference view affects the estimation
and our method is more accurate in contrast. Despite this,
our final synthesized view is more accurate than the result
of state-of-art phase-based view expansion algorithm [4],
which demonstrates that our method is insensitive to low
quality disparity estimation.

The computational cost of our method is mainly deter-
mined by the integration in Eqn.7. In the supplemental
material we prove that for an image of n × n pixels, the
temporal complexity is of O(n4). If the disparity d is in
the direction of the x or y axes, the time complexity can be

reduced to O(n3).

8. Discussions and Conclusions
The limitation of our work is that the novel view points

are restricted to the neighbor of input view points. When
the novel view point is relatively far from the input, the as-
sumption of Lambertian scenes becomes less accurate and
the occlusion regions become larger. Therefore, the quality
of novel view synthesised would degrade. This can be seen
from Table1 that as α becomes larger, the result PSNR falls
accordingly.

The main contribution of our work is a novel phase-
based framework to render high quality 4D lightfield from
very small baseline stereo pairs. Our framework is also ca-
pable to give a quality disparity estimation under such small
baselines, which is very challenging for traditional stereo
matching algorithms. Besides, our work enables small base-
line stereo pairs for light field algorithms and serves as a
potential bridge to connect between the two. It also has the
potential of transforming traditional cameras into light field
cameras without installing extra hardware.

Future work should extend our framework for unstruc-
tured input, which would further reduce the complexity of
acquiring dense light field. In addition, it is also possible to
consider using multiple input images to further improve the
quality of synthesized light field in terms of accuracy and
occlusion handling, which is the bottle neck for generating
distant views. Also, extending the assumption of Lamber-
tian scenes is also crucial for rendering distant views but
may be very challenging; one should consider using mul-
tiple input images in order to sample the BRDF of scene
surfaces effectively.
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