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In this supplementary material, we provide the implementation details of
our method and more experiments. Please see the supplementary video for more
visualization of our results.

1 Implementation Details

1.1 Data Collection and Preprocessing

The textured scans are captured using a dense DLSR rig as the training database
for creating the avatar as shown in Fig. 1. We firstly fit SMPL [6] to each scan
using [1]. Then the scan is deformed to the canonical pose following ARCH [2].
Different from directly learning SDF from the non-watertight canonicalized scans
[13], we non-rigidly deform a canonical SMPL to align with the scan for filling
the holes, then utilize Poisson reconstruction [3] to generate watertight scans.
Finally, to jointly train the texture template represented by NeRF [9], we render
the original textured scans from 60 views distributed uniformly in a circle.

Note that the texture and occupancy supervisions are not in the same space,
i.e., the former is in the posed space while the later is in the canonical space.
The reason for that is there may exist body part intersections on the original
captured scans, e.g., the armpits, if we sample points around these regions in the
posed space, the corresponding ground-truth occupancy values will be incorrect.

1.2 GeoTexAvatar

Network Architecture. The GeoTexAvatar network contains two modules,
i.e., the Geo-Tex implicit template and the pose-conditioned warping field. The
Geo-Tex implicit template is represented as an MLP, which takes a 3D template
point with 10th-order positional encoding [9, 15] as input, and returns its occu-
pancy, color and density. The template network consists of a shared MLP with
(63, 256, 256, 256, 256, 256, 256, 256) neurons, a geometry MLP with (256, 128,
2) neurons and a color MLP with (256, 256, 128, 3) neurons. The geometry MLP
jointly outputs the occupancy and density value; such an implicit representation
is inspired by [14]. The last non-linear activation functions of occupancy, density
and color MLPs are Sigmoid, ReLU and Sigmoid, respectively.

The pose-conditioned warping field consists of a positional map encoder E(·)
and an offset decoder D(·):

∆W (xc,θ) = D(xc, B(π(xc);E(P(θ)))), (1)
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Fig. 1: Training scans of one subject.

where xc is a canonical 3D point, P(θ) is the rendered canonical SMPL posi-
tional map where the pixel value is the posed SMPL vertex position, B(·) is a
bilinear sampling function to sample feature on the feature map E(P(θ)) for xc,
and π(·) is the orthographic projection to project xc onto the 2D plane of the
rendered positional map. To generate the positional map, we render the canon-
ical SMPL from front and back views to generate two pixel-aligned positional
maps, then concatenate them together, and finally feed them to the positional
map encoder E(·) followed by the offset decoder D(·). Following [8], the posi-
tional map encoder E(·) is a UNet [10] that contains seven [Conv2d, BatchNorm,
LeakyReLU(0.2)] blocks, followed by seven [ReLU, ConvTranspose2d, Batch-
Norm] blocks, and it returns a 256× 256× 64 feature map. The offset decoder is
a MLP that takes the canonical point and corresponding feature as input, and
it contains (3+64, 256, 256, 256, 256, 256, 256, 256, 3) neurons at each layer,
respectively. Note that in [8] the SMPL positional map in defined in the SMPL
UV space. We do not follow the practice in [8] because we need to query the
feature for the whole 3D space. Our definition also avoids the discontinuity in
the UV space which causes the seam artifacts on the back of animated models
in [8].

Training. We train the whole network in an end-to-end manner using the Adam
[4] optimizer with a batch size of 4 for 30 epochs on ∼ 20 scans. The loss weights
are set as λgeo = 0.5, λtex = 1.0, λreg = 0.1. The initial learning rates of the Geo-
Tex implicit template and warping field are 1× 10−3 and 1× 10−4, respectively,
and drop half every 20000 iterations. We initialize the warping field to output
zero offsets, and at the first two epochs, we fix the warping field and only optimize
the template network to obtain a coarse template. The training of one subject
for creating an animatable avatar takes about two hours.

1.3 Avatar-conditioned Volumetric Capture

As shown in Fig. 3 of the main paper, the initialization of the volumetric capture
contains avatar animation and normal map canonicalization.
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Avatar Animation. Firstly, we can estimate SMPL pose from the monocular
color input using SPIN [5] or PyMAF [19]. With the SMPL pose, we can gen-
erate canonical SMPL positional map as described in Sec. 1.2. We allocate a
canonical volume that contains the canonical SMPL body. For each voxel, we
feed its position and projected feature on the convoluted feature map to the
network to evaluate its occupancy, then we perform Marching Cubes [7] on this
occupancy volume to acquire a canonical geometric model. Finally, we render it
from front and back views by orthographic projection to obtain front and back
avatar normal maps.

Normal Map Canonicalization. In this branch, we firstly estimate the normal
map from the monocular color input using pix2pixHD [17] following PIFuHD
[12]. Then we deform the canonical avatar model using the estimated SMPL
pose to the image/posed space, then project it onto the normal map to fetch a
normal vector for each visible vertex. Similar to avatar animation, we render the
fetched normals using the canonical avatar from the same front and back views by
orthographic projection to obtain front and back image-observed normal maps.

With the above two steps in the initialization, we bridge the avatar and image
information on the unified 2D canonical image plane.

Canonical Normal Fusion As introduced in Sec. 5.1 of the main paper, we
formulate the fusion as an optimization, and in the energy function Eq. 6, we
set λfitting = 1.0 and λsmooth = 1.0, and we optimize it using Gauss-Newton
algorithm for 50 iterations. The resolution of all the normal maps are 512× 512,
and the resolution of the rotation grids is 64× 64.

Model Reconstruction We introduce a reconstruction network pretrained on
a large-scale human dataset (THuman 2.0 [18]) to leverage the data prior to
infer the 3D model from the fused normal maps. Because the normal maps are
in the canonical space, similar to Sec. 1.1, we deform all the original scans to the
canonical pose by the SMPL registration. Then we render the canonicalized scan
from front and back views to obtain normal maps. We sample 3D points ran-
domly near surfaces and in the canonical volume as in PIFu [11], then calculate
their occupancy values. With the rendered normal maps and sampled points, we
train this network using the Adam [4] optimizer with a batch size of 4 and a
learning rate of 1× 10−3 for 240 epochs. The training takes about two days on
one RTX 3090 GPU.

1.4 Runtime Performance

Given ∼20 textured scans of one subject, it takes about 0.5 hours for the data
preprocessing and 2.0 hours for the avatar training. In the volumetric capture,
the avatar animation, normal map canonicalization, canonical normal fusion,
model reconstruction and texture generation cost about 1.0, 0.5, 1.2, 0.8, 3.0
secs, respectively. Overall, our method takes about 6 ∼ 7 secs for reconstructing
one frame.
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Fig. 2: Comparison between GeoTexAvatar and Neural-GIF [16]. We show
animated results by our GeoTexAvatar and Neural-GIF on both training and novel
poses, respectively.

2 Additional Experiment

Comparison against Neural-GIF [16]. We further compare our animat-
able avatar module, GeoTexAvatar, against another state-of-the-art scan-based
avatar method, Neural-GIF [16]. Fig. 2 shows the animated results of our method
and Neural-GIF on both training and novel poses, respectively. It shows that
Neural-GIF suffers from overfitting, and cannot generalize the avatar trained on
22 scans to the novel poses. We hypothesize that the reasons include: 1) It is
hard for the inverse skinning network in Neural-GIF to learn good generaliza-
tion from only few examples, because its input coordinate is in the posed space
where the skinning weight of the same position varies significantly when the
SMPL pose changes; 2) Neural-GIF does not decompose the pose-agnostic de-
tails and the pose-dependent ones and it conditions both the displacement and
canonical SDF networks on the pose input, thus all the surface details are driven
by the pose input. Benefiting from the decomposition between pose-agnostic and
pose-dependent details, our method realizes more robust and plausible pose gen-
eralization.



AvatarCap 5

References

1. https://github.com/zju3dv/EasyMocap

2. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: Animatable reconstruction
of clothed humans. In: CVPR. pp. 3093–3102 (2020)

3. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceed-
ings of the fourth Eurographics symposium on Geometry processing. vol. 7 (2006)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

5. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct
3d human pose and shape via model-fitting in the loop. In: ICCV. pp. 2252–2261
(2019)

6. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned
multi-person linear model. TOG 34(6), 1–16 (2015)

7. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. TOG 21(4), 163–169 (1987)

8. Ma, Q., Yang, J., Tang, S., Black, M.J.: The power of points for modeling humans
in clothing. In: ICCV. pp. 10974–10984 (2021)

9. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV.
pp. 405–421. Springer (2020)

10. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

11. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu:
Pixel-aligned implicit function for high-resolution clothed human digitization. In:
ICCV. pp. 2304–2314 (2019)

12. Saito, S., Simon, T., Saragih, J., Joo, H.: Pifuhd: Multi-level pixel-aligned implicit
function for high-resolution 3d human digitization. In: CVPR (June 2020)

13. Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: Weakly supervised learning of
skinned clothed avatar networks. In: CVPR. pp. 2886–2897 (2021)

14. Shao, R., Zhang, H., Zhang, H., Chen, M., Cao, Y., Yu, T., Liu, Y.: Doublefield:
Bridging the neural surface and radiance fields for high-fidelity human reconstruc-
tion and rendering. In: CVPR (2022)

15. Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Sing-
hal, U., Ramamoorthi, R., Barron, J., Ng, R.: Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Infor-
mation Processing Systems 33, 7537–7547 (2020)

16. Tiwari, G., Sarafianos, N., Tung, T., Pons-Moll, G.: Neural-gif: Neural generalized
implicit functions for animating people in clothing. In: ICCV. pp. 11708–11718
(2021)

17. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-
resolution image synthesis and semantic manipulation with conditional gans. In:
CVPR. pp. 8798–8807 (2018)

18. Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4d: Real-time human
volumetric capture from very sparse consumer rgbd sensors. In: CVPR. pp. 5746–
5756 (2021)

19. Zhang, H., Tian, Y., Zhou, X., Ouyang, W., Liu, Y., Wang, L., Sun, Z.: Pymaf: 3d
human pose and shape regression with pyramidal mesh alignment feedback loop.
In: ICCV. pp. 11446–11456 (2021)


