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Abstract—Light fields suffer from a fundamental resolution
trade-off between the angular and the spatial domain. In this
paper, we present a novel cross-scale light field super-resolution
approach (up to 8× resolution gap) to super-resolve low-
resolution (LR) light field images that are arranged around a
high-resolution (HR) reference image. To bridge the enormous
resolution gap between the cross-scale inputs, we introduce an
intermediate view denoted as SISR image: i.e., super-resolving
LR input via Single Image based Super-Resolution scheme,
which owns identical resolution as HR image yet lacks high
frequency details that SISR scheme cannot recover under such
significant resolution gap. By treating the intermediate SISR
image as the low frequency part of our desired HR image, the
remaining issue of recovering high frequency components can be
effectively solved by the proposed high-frequency compensation
super-resolution (HCSR) method. Essentially, HCSR works by
transferring as much as possible the high-frequency details from
the high-resolution reference view to the low-resolution light
field image views. Moreover, to solve the non-trivial warping
problem that induced by the significant resolution gaps between
the cross-scale inputs, we compute multiple disparity maps from
the reference image to all the low-resolution light field images,
followed by a blending strategy to fuse for a refined disparity
map; finally, a high-quality super-resolved light field can be
obtained. The superiority of our proposed HCSR method is
validated on extensive datasets including synthetic, real-world
and challenging microscope scenes.

Index Terms—Light field, Super-resolution, Reference-based
Super-resolution, Depth estimation.

I. INTRODUCTION

ALight field can be defined as the collection of all light
rays in a 3D space [1], [2], [3]. Unlike regular cameras,

plenoptic (light field) cameras [4] capture directional light
information, which generates new capabilities including ad-
justment of the camera parameters (such as focus and aperture
size), changes in the camera viewpoint, and estimation of
depth. As a result, light field imaging is increasingly being
used in a variety of application areas including digital pho-
tography, microscopy, robotics, and computer vision. Conven-
tional light field capture systems, such as multi-camera arrays
[5] and light field gantries [6], require expensive custom-
made hardware. In recent years, commercially available light
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field cameras have been developed, such as the Lytro [7] and
RayTrix [8], which include a micro-lens array as well as have
the capacity for simultaneous capture. Unfortunately, due to
the restricted sensor resolution, they usually suffer from a
resolution trade-off between the spatial and angular domains.
So improving the resolution of the light field has become a
hot-spot of these related areas.
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Fig. 1. Comparison of light field super-resolved results by a factor of 8 on
microscope light field data Cotton [9] obtained by the VDSR method [10],
PaSR method [11], iPADS method [12] and our proposed approach. The result
of the VDSR [10] method shows a serious blur in the entire scene because of
the large super-resolution scale. The result of the PaSR [11] method shows
ghosting artifacts, especially in the occlusion regions. The result of the iPADS
method [12] suffers from distortion because of the inaccuracy of the disparity
maps.The proposed HCSR method produces better subjective results in this
challenging case, achieving the highest PSNR and SSIM values.

To improve the spatial resolution of the light field while
maintaining the angular resolution, the hybrid camera setup
[11] using a Lytro camera and a high-resolution DSLR cam-
era is proposed. Using a PatchMatch-based super-resolution
(PaSR) method [11], some of the high-frequency details of the
DSLR camera can be transferred to the dense Lytro views to
give a spatial resolution-improved light field. However, PaSR
computes the target pixel value as the average value of all
the overlapping patches on the DSLR, which leads to a loss
of high-frequency information. An iterative Patch-And-Depth-
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based Synthesis (iPADS) method [12] is further proposed
by deforming the candidate patches based on the surface
geometry, such that the averaged patches are more similar to
the ground-truth to mitigate the high-frequency loss in the
average operation. However, the synthesized super-resolved
images still suffer from inaccuracy due to the distortion of the
disparity maps and the fusion operation of multiple patches,
especially on the occlusion regions, as shown in Fig. 1(b) and
(c).

In this paper, we discard the conventional ways that apply
patch-based averaging, which will blur the high-frequency de-
tails naturally. To bridge the enormous resolution gap between
the cross-scale inputs (usually up to 8×), we introduce an
intermediate view denoted as SISR image: i.e., super-resolving
LR input via Single Image based Super-Resolution scheme
(here we use VDSR [10] followed by bicubic upsampling
to super-resolve LR image by 8×), serving as the ‘middle-
man’. The insight lies in that the SISR image owns identical
resolution as HR, while it lacks high frequency details that
can hardly be recovered by SISR scheme directly, especially
for such significant resolution gap. Interestingly, we can treat
the intermediate SISR image as the low frequency part of
our desired HR image, then the remaining issue would be
how to recover the high frequency components? Along this
line, we propose a novel high-frequency compensation super-
resolution (HCSR) method to transfer as much as possible
the high-frequency details from the high-resolution reference
view to the low-resolution light field image views. We consider
a similar input – several low-resolution side views arranged
around a central high-resolution view – as [12], where the
central view serves as a reference for the super-resolution
of all the side views. The SISR image for the central view
is used for the extraction of the high-frequency components
that are missing in the side views, while the SISR image
of the side views are used for disparity computation and as
the basis for adding the high-frequency information wrapped
from the central view based on the computed disparity map.
In the disparity estimation step, we propose a multi-disparity
blending strategy, which takes advantage of the regular layout
structure of the light field image array and applies hole-
filling procedures to obtain the final refined disparity map.
In this way, we can avoid the blurry effect originated from
the patch averaging operations in [11] and [12], so as to
optimize the high frequency perseverance of reconstruction.
The main features and contributions of our proposed HCSR
are elaborated as follows:

• Cross-scale: We introduce the intermediate SISR view
for both of the high-resolution and low-resolution inputs
to bridge the significant resolution gap, so that we can
handle the large scaling factor (×8).

• Large parallax: Parallax introduces occlusion region-
s, which is the main challenge in available warping
problems. We utilize complementary information of the
occlusion regions from different side views of the light
field and propose a fusion and hole-filling algorithm to
compute a high-quality depth for the reference view.
The maximum disparity between the reference image and

the side view images is about 35 pixels counted on the
reference image.

• Retaining details: Extensive experiments validate that
the proposed approach significantly improves the re-
construction quality subjectively and objectively (PSNR:
average 2 dB higher) compared to other state-of-the-art
approaches.

• Low complexity: In addition, our framework is signifi-
cantly faster than the PatchMatch-based method [11], [12]
for reconstruction of the whole light field (more than 20
times faster). This shows the efficiency of our approach,
validating the practical usage of the proposed algorith-
m. In addition, we demonstrate the applications of our
approach for depth enhancement using the reconstructed
high spatial resolution light field.

The source code of this work will be made public. The
rest of the paper is organized as follows. In Section II we
discuss the related work. Section III illustrates the proposed
HCSR method for light field super-resolution. In Section IV,
our detailed experimental results and analysis are provided.
Section V draws a conclusion.

II. RELATED WORK

A comprehensive overview of light field techniques is
provided in Wu et al. [3]. In this paper, we mainly focus on
the literature for improving the spatial resolution of the light
field. We divide the related works into three categories: single
image super-resolution, light field super-resolution and hybrid
imaging-based super-resolution.

A. Single Image Super-resolution

SISR is a classical computer vision problem that has been
intensively studied. A classical SISR method can be catego-
rized into four types: prediction models, edge-based methods,
image statistical methods and example-based methods. Further
details for the evaluation of these approaches can be found in
the work of Yang et al. [13]. Among these, the example-based
methods achieved state-of-the-art performance.

Recently, deep learning-based approaches achieved better
performance on SISR. Dong et al. [14] proposed a network
for SISR named SRCNN, in which a high-resolution image
is predicted from a given low-resolution image. Kim et al.
[10] improved on this work by using a residual network with
a deeper structure and named the new method VDSR (Very
Deep convolutional network for Super-Resolution). However,
these SISR approaches cannot handle a scaling factor larger
than 4 times. The capacity for restoring high-frequency in-
formation weakens quickly with the increasing of the scaling
factor, appearing as an extremely blurry result in the super-
resolved image.

B. Light Field Super-resolution

Since a light field has limited resolution, many methods
have been proposed to increase its spatial or angular resolution.
Wanner and Goldluecke [15] introduced a variational light
field spatial and angular super-resolution framework. Given
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Fig. 2. Overview of the pipeline of the proposed HCSR approach for reconstructing light field.

the depth estimates at the input views, they reconstructed novel
views by minimizing an objective function that maximizes the
quality of the final results. Based on Wanner and Goldluecke’s
work, a certainty map was proposed to enforce visibility
constrains on the initial estimated depth map in [16]. Yoon
et al. [17] used convolutional neural networks (CNNs) to
perform spatial and angular super-resolution. However, these
methods could usually only increase the resolution by a scaling
factor of 2 or 4. Zhang et al. [18] proposed a phase-based
approach to reconstruct light fields. However, their method
was designed for a micro-baseline stereo pair. Kalantari et
al. [19] used two sequential CNNs to model depth and color
estimation simultaneously by minimizing the error between
synthetic views and ground truth images. Wu et al. [20]
presented a CNN-based approach on the epipolar plane image
(EPI) domain to reconstruct missing views. However, both of
these two methods only increased the angular resolution of the
light field.

In general, light field super-resolution contains spatial and
angular domains. Some methods [18], [19], [20] only increase
the resolution of one domain, and others [15], [16], [17]
increase them both. However, the increase of the light field
resolution is extremely limited. Meanwhile, the super-resolved
results may have many artifacts because it is very difficult for
most super-resolution algorithms to reconstruct high-frequency
details from completely unknown information. Therefore, we
need auxiliary information to form a hybrid input for better
reconstruction of light fields in a larger scaling factor.

C. Super-resolution using Hybrid input
The idea of hybrid imaging was proposed in the context

of motion deblurring [21], where a low-resolution high-speed
video camera co-located with a high-resolution still camera
was used to deblur the blurred images. Following this, several
examples of hybrid imaging have been found in different
applications. Cao et al. [22] proposed a hybrid imaging system
consisting of a RBG video camera and a low-resolution multi-
spectral camera to super-resolve the high-resolution single
spectral camera. Another example of a hybrid imaging system
is the virtual view synthesis system proposed by Tola et al.
[23], where four regular video cameras and a time-of-flight

sensor are used. They show that by adding the time-of-flight
camera, they could render better quality virtual views than
by just using a camera array with similar sparsity. Recently,
a high-resolution camera, co-located with a Shack-Hartmann
sensor was used to improve the resolution of 3D images from a
microscope [24]. Most of the above-mentioned hybrid imaging
systems require a beam splitter to guarantee that the two
streams are imaged with the same optical center without the
need of disparity computation.

Boominathan et al. [11] introduced a PatchMatch-based
light field super-resolution method using a hybrid imaging
technique, where the patches from each view of a light field
are matched with a reference high-resolution image of the
same scene. Since the high-resolution image has the exact
details of the scene, the super-resolved light field has the true
information compared to the hallucinated information by [25],
[26]. However, they use the library for approximate nearest
neighbors [27] to search for matching patches in the reference
high-resolution image, so the algorithm will be too slow to
generate the whole super-resolved light field. Since the Lytro
camera can only capture burst images with maximum frame
rate at 1fps, the recent work of Wang et al. [28] generates a
full light field video at 30 fps using a learning-based hybrid
imaging based on the setup proposed in [11]. In this work, they
only interpolated in the time dimension without super-resolve
in the spatial dimension.

Wang et al. [12] proposed the design of a central-view
camera along with a set of low-resolution side-view cameras
for high quality light field acquisition. Compared with the
setup in [11] using a combination of Lytro and DSLR, each
side-view camera in this setup has independent optical design,
which can be more flexible when choosing the size of the
baseline, or other system parameters like focal length, spatial
temporal resolution, etc. More importantly, it allows for the
capture of light field video (Lytro cannot capture video). In
all, compared with the setups which use cameras of the same
resolution, the hardware setup in [12] saves the cost, minimizes
the size of system, and also minimizes the data amount of the
input (each side-view camera only takes about 1.56% data
rate of the central camera with 8 × scale difference). Based
on this hybrid setup, the authors proposed the iPADS method
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which combines PatchMatch-based and depth-based synthesis
iteratively to update the patch database. Although the database
is enriched with better patches, they finally synthesized the
results using the PatchMatch approach, i.e., using multiple
patches for averaging to get the final results, which inherently
blurs the high frequency details. Comparably, in this paper, we
discard these patch-based averaging approaches [11], [12], and
proposed a new method that can separate the high frequency
components in the input high-resolution image and transfer
them to the desired image. In this way, high frequency texture
can be reserved and better super-resolution results can be
achieved.

III. PROPOSED HIGH-FREQUENCY COMPENSATION BASED
SUPER RESOLUTION (HCSR) METHOD

In this section, we introduce the proposed HCSR method.
Note that the input to our framework is hybrid and cross-scale
n×n light field; i.e., it contains n×n−1 low-resolution side
views Li, (i = 1, ..., N,N = n2−1) arranged around a central
high-resolution reference view R. Our goal is to super-resolve
all the Li views using reference R.

A. Overview of HCSR

Fig. 2 illustrates the pipeline of our proposed HCSR, which
is composed of two main modules: the computation of the low
frequency component of desired HR image: i.e., the intermedi-
ate SISR image of both R and Li views (Module 1), as well as
the extraction of the high-frequency component of desired HR
image: i.e., the warping-based high-frequency compensation
aiming to super-resolve each side view Li (Module 2).

In Module 1, in order to compute the dense warping field to
warp the high-frequency components of the central image, the
enormous resolution gap between R and Li views should be
first bridged. So, the SISR views are proposed to balance the
large resolution gap. Moreover, the computed SISR views are
the key to obtaining the high-frequency components. Briefly,
the SISR images SISRli of Li are generated using the
available single image super-resolution (SISR) method (here
we use VDSR [10] followed by bicubic upsampling to super-
resolve LR image by 8×), while the SISR images SISRh of
R is computed by first downsampling it to the same resolution
as the Li, followed by upsampling via the same method
applied on Li views.

In Module 2, we first compute the high-frequency details
of the central view as the difference map (Fig. 2(c)) between
R and its SISR image SISRh. In parallel, we compute the
disparity maps (Fig. 2(d)) between each SISRli and SISRh
and fuse them together to obtain a refined disparity map (Fig.
2(e)). Later, based on this refined disparity map, we propagate
the difference map to each of the side views to form the warped
disparity maps (Fig. 2(f)). Finally, the warped difference map
is added back to the SISR images SISRli to get the super-
resolved images (Fig. 2(g)) of the whole light field.

B. Computing the Difference Map

To get the SISR view of each side view image Li, we
up-sampled it to the same resolution of R using one of the
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Fig. 3. The process of calculating the disparity map with our cross-pattern
strategy. The red box in the central view is the Hi image. (b) The process
of the stereo matching between the SISRh image and SISRl image (blue
boxes) in the horizontal and vertical coordinate. (c) We generate the refined
disparity maps (yellow boxes) of the whole light field.

available SISR method VDSR [10]. Note that state-of-the-art
single image super-resolution (SISR) methods such as VDSR
[10] have a decent super-resolution performance in the case of
an up-sampling factor around ×2−×4. However, once the up-
sampling goes to a large scale such as ×8, the quality of SISR
results degrades significantly, and most of the high-frequency
details are not recovered; as shown in Fig. 1(a), the obtained
SISR images SISRli, (i = 1, ..., N) are blurred.

In order to recover the high-frequency details, our key idea
is to transfer the high-frequency information contained in
the central view image R to each input low-resolution side-
view image. We calculate this high-frequency information as
a difference map by:

H = R− SISRh = R− (R ↓) ↑ . (1)

Here, the difference map is obtained by the difference between
R and its SISR version, SISRh, which is defined first by
the bicubic down-sampling operation ↓ to match the size of
SISRli, followed by the upsampling operation ↑ using the
SISR method.

C. Computing the Disparity Maps
To warp the difference map H to all the side views, the

disparity map of the central view, which stands for the dense
correspondences between the central image to any of the side
views, needs to be computed. Here, it is more reasonable to use
both of the SISR images of the central view and the side views
for disparity map computing, since they contain the same level
of detail.

Available light field depth estimation methods [29], [30] can
be adopted to calculate the disparity map in our case. However,
most of these available methods assume that the light fields
are captured perfectly with epipolar lines both horizontally
and vertically well aligned, such as light fields captured
from Lytro cameras. However, for light fields captured by
camera arrays [5], these assumptions are difficult to hold and
the performances of these methods are not guaranteed. We
therefore use a more robust disparity calculation.

We calculate the disparity map as a multiple disparity
fusion strategy. For simplicity, we only use the side views
on the central cross-pattern of the light field. 1 We first utilize

1We note that occluded points would be visible from the diagonal views
but not horizontal or vertical views. However, this rarely happens. To save
the computation cost, we use the cross-pattern views for disparity calculation
merely.
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Fig. 4. The disparity map before and after replacement. The arrow pointing
regions in close-up versions is not clear because of the occlusion. Thus these
regions can be replaced by the values from the regions of the corresponding
complementary disparity map.

binocular stereo matching [31] to get 2× (n− 1) versions of
the disparity maps between the central SISR image SISRh
and all the other SISRli images on the cross of the light field
structure. Fig. 3(a) shows a light field structure with n = 5.
In this case, 8 disparity maps of the central view are obtained.
Unfortunately, these disparity maps are also usually inaccurate,
in particular in the occlusion regions.

Because of the horizontal and vertical symmetry of the light
field, the corresponding regions of each image pair (e.g., L1

and L1
′ in Fig. 3(b)) contain complementary information in the

occlusion regions. We therefore divide the side view images
into n− 1 pairs. For example, as shown in Fig. 3(b)), L1 and
L1
′ are in a pair, and L2 and L2

′ are in a pair.
For each side view image, we first detect the occluded

regions on the central view that are not visible on the side
view according to the left-right consistency check [32]. For
example, we can mark the occluded regions on view L1 and
view L′1. Here, to ensure that the real occlusion regions are
included, we apply a dilation operation on the detected regions.
For each occluded region detected by the disparity map Di,
the disparity values can be replaced by the values from the
regions of the corresponding complementary disparity map
D′i, and vice versa. Such replacement is applied on all the
disparity pairs and the accuracy of the 2 × (n − 1) disparity
maps are improved. The refined disparity map is shown in the
middle of Fig. 4. In the occlusion regions (the yellow and red
boxes in Fig. 4), the edges are clear. In particular, the close-
up versions in left and right views reflect this corresponding
complementary strategy. The regions in the arrow pointing are
bad and can be replaced by the values from the regions of the
corresponding complementary disparity map. Fig. 4 shows the
disparity map pair before and after replacement.

Finally, we blend all the improved disparity maps of the
central view to form a refined disparity map (Fig. 2(e)). For
each disparity value dk of a pixel p on disparity map Dk,
(k = 1, ..., 2(n−1)), we discard the two maximum values and
two minimum values to remove outliers. We then compute the
mean value of the residue values to form the refined disparity
map (Fig. 2(e)).

The performance of the proposed disparity blending scheme
is validated in Fig. 5. It compares the final super-resolved light
field (after the warping step) on the EPI, with and without
the proposed blending scheme. Without the blending scheme,
the disparity map of each side view is computed indepen-
dently and the final high-frequency component warping result

(c)

(d)

(e)

(f)

(a)

(b)

Fig. 5. Comparison of the super-resolved results and their EPI determining
whether to adopt our cross-pattern strategy, including information complemen-
tarity and blending. (a) and (b) are the close-up versions of the super-resolved
results in the red boxes. (c) and (d) are the EPIs located at the red line shown
in the central view, which are upsampled to an appropriate scale for better
viewing. (e) and (f) show the close-up versions of the EPIs (c) and (d) in the
blue and yellow boxes, respectively. (a) and (c) are the results without using
our proposed strategy. (b) and (d) are the results using our strategy, which
show reasonable results with a smooth edge and continuous structure of the
EPI.

contains blurring and tearing artifacts in the occluded regions
Fig. 5(a). The disparity blending strategy produces plausible
results in the occluded regions (see Fig. 5(b)). Fig. 5(e) and
(f) show the EPIs with and without our blending scheme.
From the clearly structured EPI results (Fig. 5(f)), which show
continuity (i.e., consistency among views), we can see that our
reconstructed light field benefits from these high-quality and
view-consistent disparities.

D. The Difference Map Warping and Occlusion Handling

In this subsection, we propagate the central difference map
H to all the side views based on the refined disparity map.
Because the disparity values are discrete, direct warping of
the difference map produces quantized errors. To this end, we
operate this warping step in the sub-pixel level by enlarging
the size of the disparity map and difference map by a factor of
4 and then warp each pixel value to the side views based on
the flow values. We finally down-sample the warped results to
the original size.

Because of occlusions, we note that such a per-pixel based
warping strategy produces unwarpped pixels that appear like
the punctiform area on the side views as shown in Fig. 6(b). To
mitigate these artifacts, we fill these holes (unwarped pixels)
through a bilateral filtering operation [33], which is based on
the assumption that pixels with similar colors around a certain
region are likely to have a similar value. We therefore utilize
the pixel difference information of the holes’ surroundings and
estimate the difference in the occlusion regions by combining
the value of color similarity and Euclidean distance. We
assume that W is the square window of length γ (γ = 7)
centered at the pixel (i, j). g(i, j) is the difference value
in these holes region and determined by all pixels in this
windowW:

g(i, j) =

∑
k,l∈W

f(k, l)ω(i, j, k, l)∑
k,l∈W

ω(i, j, k, l)
, (2)

where i, j are the indices of the current unwarped pixel in
the difference map, namely, the coordinate value. k, l are
the indices of the neighbor pixel in that window W . All the
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Fig. 6. (a) The error map between the super-resolved result and the ground
truth in the StillLife dataset. The large red and yellow boxes show the close-
ups of the red and yellow portions of this error map, respectively. (b) The
results that do not use our hole-filling method on the occlusion regions. (c)
The results that use our hole-filling method.

pixels are in the same coordinate system. f(k, l) is a neighbor
pixel difference value, and ω is the weight coefficient that is
determined by the two constraints about the color similarity
and their distance, i.e.,

ω = c× d, (3)

where

c(i, j, k, l) = exp(−‖f(i, j)− f(k, l)‖
2

γc
), (4)

and

d(i, j, k, l) = exp(− (i− k)2 + (j − l)2

γd
). (5)

Here, c is the color similarity constraint, which can better
keep the texture similarity, and d is the distance constraint,
which means the closer the distance, the higher the similarity.
γc and γd are two constants used as the thresholds of the
color difference and the distance degree, respectively. Note
that three RGB channels should be considered in the color
similarity constraint c.

Fig. 6 shows the error map between the super-resolved result
and the ground truth in the StillLife dataset. Fig. 6(c) and
(b) are the close-up versions that use the hole-filling method
or not. In these occlusion regions, the final result of the
super-resolution is always inaccurate. We therefore estimate
these values through their surroundings, and fortunately, the
results are better. The punctiform area in 6(b) represents error
estimation regions, and these regions decrease greatly through
our hole-filling method in 6(c).

We obtain the difference maps Hi(i = 1, 2..., N) after
propagating the central difference map H to all the side views
and estimating the difference values in the hole regions. This
difference map (Fig. 2(f)) indicates the missing high-frequency
information between the Ml

i views and the desired high-
resolution side views. Specifically, Hi is added to the VDSR
super-resolved version Ml

i to form the final super-resolved
results (Fig. 2(g)).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the proposed framework on
several datasets including real-world scenes, microscope light
field data and synthetic scenes. We compare our work with

bicubic interpolation, the typical SISR method VDSR [10] and
the PaSR method proposed by Boominathan et al. [11]. We
also compare our work with the state-of-the-art iPADS method
proposed by Wang et al. [12] using their datasets. The datasets
we use for the evaluation contain several challenging scenes
such as complex occlusion regions, scenes with large parallax
and even challenging microscope light fields in dim lighting
conditions. The quality of the reconstructed views is measured
by the PSNR and structural similarity (SSIM) [35] against the
ground truth images. SSIM produces a value between 0 and 1,
where 1 indicates perfect perceptual quality with respect to the
ground truth. In addition, we demonstrate how a reconstructed
light field can be applied to enhance the depth estimation.

For light field datasets, we evaluate these methods according
to two different scale factors: ×4 and ×8. We keep the central
image of the light field unchanged and down sample the rest of
the images as side view images. The central image is regarded
as the the reference image while the original inputs of the side
view images act as the ground truth for computing PSNR and
SSIM.

We evaluate the bicubic interpolation, VDSR [10], PaSR
[11] iPADS [12] and our approach on the different datasets.
For SISR, we use the released model for super-resolution
in scale ×4, while the scale ×8 VDSR results are obtained
by applying ×4 VDSR upsampling followed by ×2 bicubic
upsampling. For PaSR [11] in scales ×4 and ×8, we set the
patch size in the Li as 8 × 8, search range as 15 pixels and
1

2σ2=0.0125, according to the paper.

A. Synthetic Scenes

We use the synthetic light field data from the HCI datasets
[34] in which the angular resolution is the same as the original
inputs (9 × 9). We use a cross-resolution input light field
with two different super-resolution scaling factors (×4 and
×8, respectively) to evaluate the performance of the proposed
framework. The spatial resolution of the original light field
images is the same as the ground truth.

Table I lists a quantitative evaluation on the synthetic dataset
of the proposed approach compared with other methods, with
scaling factors ×4 and ×8. Our approach achieves the best
performance among all methods with the different scaling
factors.

Fig. 7 shows the super-resolution results of different ap-
proaches by the scaling factor ×8. As can be observed, our
approach produces much sharper edges than other methods
without any obvious artifacts across the image. In the Buddha
case, the point of the dice is shown in the blue box. Our HCSR
method is able to produce more accurate high-frequency detail
information. The result of the PaSR method [11] has ghosting
artifacts. The result of the VDSR method [10] has deformation;
the point changed to an oval. The bicubic interpolation method
generates a result with severely blurred artifacts. In the close-
up version of our proposed approach, it is possible to observe
increased sharpness and details in the super-resolved results.
The results of Table I and Fig. 7 also indicate that the proposed
scheme produces the least amount of artifacts.
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Fig. 7. Comparison of the proposed approach against other methods on the synthetic Scenes [34]. The results show the ground truth of reference images, the
super-resolved images, and the close-up versions in the blue and yellow boxes.

TABLE I
QUANTITATIVE RESULTS (PSNR / SSIM) OF RECONSTRUCTED LIGHT FIELDS ON THE SYNTHETIC SCENES OF THE HCI DATASETS [34].

Dataset Scale Bicubic VDSR [10] PaSR [11] HCSR(Ours)
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Buddha ×4 31.3025 / 0.9976 32.8162 / 0.9846 32.0326 / 0.9815 35.7420 / 0.9922
×8 27.4507 / 0.9435 28.5385 / 0.9575 27.7893 / 0.9505 32.6646 / 0.9837

MonasRoom ×4 32.0135 / 0.9829 34.1141 / 0.9896 38.5205 / 0.9963 40.0340 / 0.9971
×8 28.3801 / 0.9593 29.7735 / 0.9712 34.2105 / 0.9900 36.2754 / 0.9930

StillLife ×4 23.5971 / 0.9115 23.9496 / 0.9200 25.4685 / 0.9448 31.0211 / 0.9837
×8 22.4118 / 0.8787 22.8924 / 0.8960 23.5386 / 0.9135 29.4210 / 0.9771

TABLE II
QUANTITATIVE RESULTS (PSNR / SSIM) OF RECONSTRUCTED LIGHT FIELDS ON THE REAL-WORLD SCENES CAPTURED BY LYTRO [6].

Dataset Scale Bicubic VDSR [10] PaSR [11] HCSR(Ours)
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Plants12 ×4 28.2444 / 0.9200 31.1447 / 0.9606 31.7925 / 0.9673 33.7690 / 0.9791
×8 26.9437 / 0.8847 27.1650 / 0.8882 27.3833 / 0.8891 31.9264 / 0.9715

Leaves ×4 25.8873 / 0.9758 30.0281 / 0.9908 31.1716 / 0.9920 34.0150 / 0.9966
×8 23.5478 / 0.9572 23.8644 / 0.9583 23.9978 / 0.9586 27.0761 / 0.9783

Reflective29 ×4 27.6793 / 0.9477 26.6961 / 0.9366 29.0102 / 0.9521 36.5569 / 0.9924
×8 25.6079 / 0.9110 26.3488 / 0.9215 27.1989 / 0.9383 34.2338 / 0.9885
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Fig. 8. Comparison of the proposed approach against other methods on the real-world scenes captured by a Lytro [6]. The results show the ground truth
images and the error maps of the super-resolved results, and the close-up versions of the image portions in the blue and yellow boxes.
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Fig. 9. Comparison of the proposed approach against other methods on the real-world scenes provided by the Stanford light field dataset [36]. The results
show the ground truth of reference images and the super-resolved images, and the close-up versions in the blue and yellow boxes.
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TABLE III
QUANTITATIVE RESULTS (PSNR / SSIM) OF RECONSTRUCTED LIGHT FIELDS ON THE REAL-WORLD SCENES PROVIDED BY THE STANFORD LIGHT FIELD

DATASET [36].

Dataset Scale Bicubic VDSR [10] PaSR [11] HCSR(Ours)
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

TarotCards ×4 26.0773 / 0.9573 28.0312 / 0.9743 27.4733 / 0.9703 33.3579 / 0.9924
×8 22.6408 / 0.8996 23.9477 / 0.9272 27.7344 / 0.9533 30.2969 / 0.9835

LegoKnights ×4 30.9126 / 0.9907 33.6056 / 0.9951 31.5034 / 0.9920 36.0596 / 0.9974
×8 26.9367 / 0.9766 28.9750 / 0.9811 29.0602 / 0.9856 31.5471 / 0.9914

EucalyotusFlowers ×4 32.2410 / 0.9856 33.4495 / 0.9871 33.0404 / 0.9882 35.0673 / 0.9919
×8 29.8656 / 0.9749 30.7956 / 0.9777 30.4894 / 0.9788 33.1605 / 0.9872

Amethyst ×4 32.6559 / 0.9904 34.3501 / 0.9924 34.8299 / 0.9942 36.0025 / 0.9954
×8 29.0107 / 0.9777 30.0956 / 0.9823 31.6159 / 0.9878 33.3072 / 0.9913
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Fig. 10. Comparison of the proposed approach against other methods on the microscope light field datasets [9]. The results show the ground truth of reference
images and the super-resolved images, and close-up versions in the blue and yellow boxes.

TABLE IV
QUANTITATIVE RESULTS (PSNR / SSIM) OF RECONSTRUCTED LIGHT FIELDS ON THE MICROSCOPE LIGHT FIELD DATASETS [9].

Dataset Scale Bicubic VDSR [10] PaSR [11] HCSR(Ours)
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Worm ×4 38.6791 / 0.9993 39.2198 / 0.9994 39.3641 / 0.9994 44.5872 / 0.9998
×8 33.0276 / 0.9973 34,6696 / 0.9982 35.3354 / 0.9984 40.9682 / 0.9995

Electronic ×4 39.9853 / 0.9954 40.9782 / 0.9958 47.1079 / 0.9994 48.4650 / 0.9996
×8 38.6305 / 0.9931 39.8154 / 0.9949 37.4233 / 0.9908 41.2975 / 0.9959

Cotton ×4 37.3355 / 0.9954 38.0979 / 0.9966 38.0764 / 0.9966 43.2985 / 0.9990
×8 31.3821 / 0.9837 34.6425 / 0.9923 32.5586 / 0.9876 38.4137 / 0.9967
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B. Real-World Scenes

We evaluate the proposed approach using the scenes cap-
tured by a Lytro Illum camera from the Stanford Lytro Light
Field Archive [6] and Stanford Light Field datasets [36]. For
the Lytro light field, we reconstruct 7 × 7 light fields and
select some representative scenes that contain occlusion and
textureless regions. For the Stanford light field, we reconstruct
a light field of 9× 9 views.

1) Lytro Datasets: Table II lists the numerical results on
the Lytro datasets. ×4 and ×8 represent that the reconstruct
up-sampling factor is 4 and 8, respectively. The PSNR and
SSIM values are averaged over the whole light field. Fig.
8 depicts some of the results (the up-sampling factor is 8)
such as the Plants 12, Leaves and Reflective 29 scenes in the
Stanford Lytro Light Field Archive. The patch-based approach
by Boominathan et al. [11] is designed so that patches from
each Li image are matched with the center reference Hi image.
Therefore, they achieve a better performance than the other
SISR method, bicubic interpolation and VDSR [10]. However,
their approach cannot provide reasonable matching pairs in
some specific regions, such as specular surfaces, and thus
tends to fail in the textureless surface in the Reflective 29 case.
Among these Lytro light field scenes, our proposed framework
is significantly better than other approaches.

The Plants 12 case contains complicated occlusions and
gloomy setting that make it challenging. The VDSR [10]
and PaSR [11] results are quite blurry around the occluded
regions such as the branches. The Leaves case includes some
leaves with a complex structure in front of a street. The case
is challenging due to the overexposure of the sky and the
occlusion around the leaves, shown in the blue box. The result
by bicubic interpolation shows serious blurring, the VDSR
[10] result shows blurring artifacts around the leaves, and the
PaSR [11] result contains ghosting artifacts. The Reflective 29
case is a challenging scene because of the textureless surfaces
of the pot and the kettle. As demonstrated in the error maps
and the close-up images of the results, the proposed approach
achieves high performance in terms of super-resolved details
and visual coherency.

2) Stanford Light Field Datasets: The Stanford light field
dataset [36] contains light fields captured by a light field gantry
system and thus has higher spatial resolution than light fields
captured by Lytro. As seen in table III, our approach produces
results that are significantly better than other methods in both
the scaling factors ×4 and ×8. We show four of these Stanford
light field scenes in Fig. 9. The Tarot Cards scene contains a
complex structure that makes it hard for the other approaches
to accurately estimate the details in the images. However, our
approach produces a plausible result that is reasonably close
to the ground truth image. Note, for example, that only our
approach is able to reconstruct the hair (blue box) clearly.
The Lego Knights scene has complex structures with a very
large parallax, where the maximum disparity of the adjacent
viewing angle is 4 pixels. The PaSR [11] method is not able to
handle the occlusion regions in which ghosting effects usually
appear between the gap of the wall (blue box). The Eucalyptus
Flowers scene contains a flower with complex occluded leaves.

TABLE V
QUANTITATIVE RESULTS (PSNR / SSIM) OF OUR APPROACH AND THE

IPADS METHOD [12].

Dataset iPADS [12] HCSR(Ours)
PSNR/SSIM PSNR/SSIM

Couple 28.6465 / 0.9775 29.9096 / 0.9908
Maria 36.1043 / 0.9944 37.5643 / 0.9960

StillLife 26.4482 / 0.9602 29.7796 / 0.9807
TarotCards 31.6326 / 0.9873 32.6982 / 0.9891

Our approach produces a reasonable result that is better than
other methods. Despite the simplicity of the scene, the results
of other methods are quite blurry in appearance, especially
in the pistil (yellow box). Furthermore, their results contain
tearing artifacts that can specifically be seen in the blue box.
Note that only our approach is able to reconstruct all the
details, such as in the pistil and in the occlusion boundaries.
The Amethyst scene has some complex texture areas, such as
in the yellow box. We produce a better result in these areas
than the other methods relative to the ground truth.

C. Microscope Light Field Dataset

In this subsection, the microscope light field datasets cap-
tured by the camera-array-based light field microscope pro-
vided by Lin et al. [9] are tested. These datasets include
challenging light fields such as complicated occlusion relations
and translucency. The numerical results are tabulated in Table
IV, and the super-resolved results are shown in Fig. 10. We
reconstruct 5×5 light fields in the Worm case, Electronic case
and the Cotton case respectively.

The Cotton case (Fig. 1) shows cotton fibers, which contain
complicated occlusion regions. The result by VDSR [10] is
quite blurry due to the large up-sampling factor. Although the
result by PaSR [11] has a higher PSNR value, some ghosting
artifacts still occur. The Worm case is more simply structured
but contains transparent objects, such as the head of the worm.
In these translucent regions, the PaSR [11] results are blurry
because of the error match maps (yellow box). The Electronic
case is in the dim lighting conditions. The regions marked
by the two boxes contain blur regions and depth discontinuity
regions. The results of all the other methods fail to reconstruct
the detailed information. Among these challenging cases,
our approach produces plausible results in these occluded,
translucent regions and dim lighting conditions.

D. Comparison with State-of-the-art iPADS Method

Based on the PaSR approach [11], Wang et al. [12] pro-
posed a patch-based and depth-based synthesis method named
iPADS. We use synthetic data sets for quantitative evaluation
and real captured dataset from [12] for qualitative evaluation.

We use the Stanford and HCI datasets for synthetic evalua-
tion. We chose 9 views from each light field, and the side-view
images are also selected and downsampled in an 8-adjacency
neighborhood of the central view. In terms of the number of
images, the distance d between the central-view and the side-
view is 3. In their experiment, the scaling factor of super-
resolution is ×8. We test our proposed approach based on their
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setup. The results of the comparison are listed in Table V. We
can conclude that our approach achieves better performance
in terms of both PSNR and SSIM.

We then use light field datasets which captured by the
prototype [12] for qualitative evaluation. The data under real
scenes is a central high-resolution image with 8 side views,
and all the 9 views constitute the type of data that our
proposed algorithm can directly apply. So in Fig. 11, we show
some super-resolved results compared with iPADS method.
From the results, our approach achieves better performance
when compared with iPADS [12]. The proposed approach can
recover better high-frequency details. For example, the yellow
boxes in “Minions” and “Electrombile”, the blue boxes in
“Warning Sign” and “Fruits”. Moreover, in occlusion regions,
the results of iPADS method suffer from tearing artifacts, while
our scheme can handle the occlusion successfully, as further
depicted by the blue boxes in “Minions”, the yellow boxes in
“Warning Sign” and “Fruits”.

Finally, we test the computational cost compared with
the iPADS method [12] under the same hardware condition.
The algorithm was implemented in MATLAB 2016b. The
computer is equipped with a GPU GTX 960 (Intel CPU E3-
1231 running at 3.40 GHZ with 32 GB of memory). Super-
resolving the StillLife case is taken as an example to test the
computational efficiency. The iPADS method takes about 17
minutes to compute one super-resolved image of resolution
768 × 768 given an input image with a spatial resolution of
96 × 96. Compared to the iPADS method, our approach is
more efficient in that it only takes 29 seconds for the same
super-resolution setting. Both iPADS method and our VDSR
module are implemented using Matlab without GPU operation.
The running time for each module are as follows: Module 1
takes 9 seconds per view, and Module 2 takes 20 seconds per
view.

E. Evaluation of Disparity Maps Blending

In this section, we compare our proposed disparity esti-
mation scheme against a state-of-the-art light field disparity
estimation approch by Wang et al. [29]. The input is cross-
scale light fields with SISR images super-resolved by VDSR
arranged around a HR central view. Our method uses only the
cross-pattern images while Wang et al. [29] uses all the light
field images. The results in Fig. 12 reveal that our disparity
estimation scheme is more robust than Wang et al.’s approach
on the cross-scale light fields, producing more clean and more
accurate disparity map.

F. Application for Depth Enhancement

In this section, we demonstrate that the proposed light
field super-resolution method can be applied to enhance depth
estimation. The up-sampling factor is ×8. We use the approach
by Wang et al. [29] to estimate the depth of the scenes.

Table VI gives the RMSE values of the depth estimation
results from using the method of bicubic interpolation, VDSR
[10], PaSR [11], our approach and the ground truth light fields
on the HCI datasets [34], including the Buddha, MonasRoom,
and StillLife cases. Fig. 13 shows the depth estimation results

on these scenes. The results show that our reconstructed
light fields are able to produce more accurate depth maps
that better preserve edge information than those produced
by the other three methods; for example, the leaves in the
flower pot in MonasRoom and the sheets behind the fruits in
StillLife. Moreover, the enhanced depth maps are close to those
produced by using the ground truth light fields.

V. CONCLUSION AND DISCUSSION

We have presented a light field super-resolution approach
using a cross-resolution input, which consists of multiple side
view images arranged around a central high-resolution image.
By taking advantage of the light field structure, we have
proposed the high-frequency compensation super-resolution
(HCSR) scheme to compute the high-frequency information
from the central image and warp this high-frequency informa-
tion to all the side views. Such a step can achieve high-quality
light field super-resolution using the cross-scale hybrid input.
Experimental results on synthetic scenes, real-world scenes,
and some challenging microscope light field datasets have
demonstrated that our approach has excellent performance in
the large scaling factor (×8) and parallax (up to 35 pixels)
and has a higher computational efficiency compared to other
methods.

The main insight of our HCSR algorithm lies in that the
target image in reference-based super-resolution (RefSR) can
be decomposed into the “low frequency” components that
can be obtained by VDSR, as well as the “high frequency”
components that VDSR can hardly recover. The low frequency
parts are obtained by super-resolving the input low-resolution
image using VDSR, while the high frequency components
are obtained by transferring those components from the high-
resolution input image aided by the disparity information. With
the proposed method, we refrain from the patch averaging
operations in [11] and [12] that may blur the desired images,
and successfully maximize the quality of the reconstructed
image. It is worth mentioning that the modules in our scheme
handle the super-resolution of each LR image independently,
implying that our algorithm supports the data in [11] as well, if
the calibration information of DSLR and the Lytro is provided.
The only thing we need to modify is the disparity blending,
to make it work for irregularly spaced cameras (by using the
calibration result).

The main limitation of our proposed method may be that
when non-Lambertian surfaces dominate in the scene, depth
information cannot be calculated accurately and the overall
super-resolution performance is compromised. The problem
would be mitigated if reflectance analysis [37] were integrated
using a data driven approach. In the future work, we can
use data driven methods to learn the low frequency and high
frequency priors of non-lambertian scenes, and integrate these
learned prior into our pipeline for better reconstruction. Over-
all, we show that our method is robust and capable of being
applied in general scenes even in the microscopic domain.
We believe that such hybrid cross-scale input will be more
popular in the future for its low data consumption because the
data amount of the sum of the side view images is far less
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Fig. 11. The super-resolved results in real light field datasets using iPADS method [12] and our proposed method.

TABLE VI
RMSE VALUES OF THE ESTIMATED DEPTH USING THE APPROACH BY WANG et al. [29] ON HCI DATASETS [34].

Dataset Bicubic VDSR [10] PaSR [11] Ours Ground truth
Buddha 0.3272 0.2782 0.5497 0.1361 0.1098

MonasRoom 0.4511 0.3353 0.3572 0.2673 0.2631
StillLife 0.1651 0.1300 0.0737 0.0462 0.0408
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Fig. 12. The comparision of our propsed disparity estimation scheme agaist
light field disparity estimation approach by Wang et al. [29].

than that of the central views. Combined with the available
angular super-resolution methods [20], [38], the hybrid cross-
scale light field capture with the proposed HCSR approach
would enable high-resolution free-viewpoint rendering and
high-quality depth estimation under a very low bandwidth data
consumption.
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