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MulayCap: Multi-layer Human Performance
Capture Using A Monocular Video Camera

Zhaoqi Su, Weilin Wan, Tao Yu, Lingjie Liu, Lu Fang, Wenping Wang and Yebin Liu

Abstract—We introduce MulayCap, a novel human performance capture method using a monocular video camera without the need for
pre-scanning. The method uses “multi-layer” representations for geometry reconstruction and texture rendering, respectively. For
geometry reconstruction, we decompose the clothed human into multiple geometry layers, namely a body mesh layer and a garment
piece layer. The key technique behind is a Garment-from-Video (GfV) method for optimizing the garment shape and reconstructing the
dynamic cloth to fit the input video sequence, based on a cloth simulation model which is effectively solved with gradient descent. For
texture rendering, we decompose each input image frame into a shading layer and an albedo layer, and propose a method for fusing a
fixed albedo map and solving for detailed garment geometry using the shading layer. Compared with existing single view human
performance capture systems, our “multi-layer” approach bypasses the tedious and time consuming scanning step for obtaining a
human specific mesh template. Experimental results demonstrate that MulayCap produces realistic rendering of dynamically changing
details that has not been achieved in any previous monocular video camera systems. Benefiting from its fully semantic modeling,
MulayCap can be applied to various important editing applications, such as cloth editing, re-targeting, relighting, and AR applications.

Index Terms—Human Performance Capture, 3D Pose Estimation, Cloth Animation, Non-rigid Deformation, Intrinsic Decomposition.

F

1 INTRODUCTION

HUMAN performance capture aims to reconstruct a tem-
porally coherent representation of a person’s dynam-

ically deforming surface (i.e., 4D reconstruction). Despite
the rapid progress in the study on 4D reconstruction using
multiple RGB cameras or single RGB-D camera, using a
single monocular video camera for robust and accurate 4D
reconstruction remains an ultimate goal because it will pro-
vide a practical and convenient way of human performance
capturing in general scenarios, thus enabling the adoption
of human performance capturing technology in various
consumer applications, such as augmented reality, computer
animation, holography telepresence, biomechanics, virtual
dressing, etc. However, this problem is highly challenging
and ill-posed, due to the fast motion, complex cloth ap-
pearance, non-rigid deformations, occlusions and the lack
of depth information.

Due to these difficulties, there have been few attempts
using a single monocular RGB camera for human per-
formance capture. The most recent works in [1] and [2]
approach the problem by using a pre-scanned actor-specific
template mesh, which requires extra labor and time to scan,
making these methods hard to use for consumer applica-
tions or for human performance reconstruction using Inter-
net videos. Moreover, these methods suffer from the limi-
tation of using a single mesh surface to represent a human
character, that is, the visible part of human skin and dressed
cloth are not separated. As a consequence, common cloth-
body interaction, such as layering and sliding, is poorly
tracked and represented. Furthermore, once obtained from
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the pre-scanned template mesh, the reconstructed texture is
fixed to the mesh over all the frames, resulting in unrealistic
artifacts.

Without a pre-scanned model, human performance cap-
ture is a very difficult problem indeed, due to the need
for resolving motion, geometry and appearance from the
video frames simultaneously, without any prior knowledge
about geometry and appearance. Regarding geometry, re-
construction of a free-form deformable surface from a single
video is subject to ambiguity [3]. As for texture, it is hard to
acquire a dynamic texture free of artifact. Specifically, com-
plex non-rigid motions introduce spatially and temporally
varying shading on the surface texture. Directly updating
the observed texture on the garment template to represent
the motion may introduce serious stitching artifacts, even
with ideal and precise geometry models. While artifact-free
texture mapping can be obtained by scanning a static key
model followed by deforming it in a non-rigid manner for
temporal reconstruction, the resultant appearance tends to
be static and unnatural.

In this paper, we propose MulayCap, a multi-layer hu-
man performance capture approach using a monocular
RGB video camera that achieves dynamic geometry and
texture rendering without the need of an actor-specific pre-
scanned template mesh. Here the ’Mulay’ notation means
that “multi-layer” representations are proposed for recon-
structing geometry and texture, respectively. We use multi-
layer representation in geometry reconstruction, which de-
composes the clothed human into multiple geometric layers,
namely a naked body mesh layer and a garment piece layer.
In fact, two garment layers are used, one for the upper
body clothing, such as a T-shirt, and the other for pants or
trousers. The upper body clothing can also be generalized
to include lady’s dresses, as shown in Fig. 1, which uses
the same 2D garment patterns as T-shirt, shown in Fig. 3,
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Fig. 1. Results generated by our MulayCap system from a monocular RGB video. From left to right: one of input images, four generated results (one
in the reference view and three in different viewing directions), a cloth editing result, and a relighting result rendered under a novel lighting condition.

only different in parameters. To solve the garment mod-
eling problem, we propose a Garment-from-Video (GfV)
algorithm based cloth simulation. Specifically, the garment
shape parameters serve as parameters for cloth simula-
tion and optimized by minimizing the difference between
simulated cloth model and the dressed garment observed
in the input video. During optimization, to avoid the ex-
haustive and inefficient search for garment parameters, we
use gradient descent minimization with a specified number
of iterations. To further align the cloth simulation results
with the input images, we apply a non-rigid deformation
based on the shape and feature cues in each image. We
demonstrate that our proposed garment simulation and op-
timization framework is capable of producing high quality
and dynamic geometry details from a single video.

The multi-layer representation also works for dynamic
texture reconstruction, in which the input video images
are decomposed into albedo layers and shading layers for
generating albedo atlas with geometry details on clothing.
Specifically, each input image is first decomposed into an
albedo image and a shading image, then the per-frame
albedo is fused with the reconstructed garments to create a
static and shading-free texture layer. The albedo layers serve
to maintain a temporally coherent texture basis. To obtain a
realistic dynamic shape of cloth, we use the shading image
to solve for the garment geometry detail with a shape-
from-shading method. Finally, by compositing the detailed
geometry, albedo and lighting information, we produce high
quality and dynamic textured human performance render-
ing, which preserves the spatial and temporal coherence of
dynamic textures and the detail of dynamic wrinkles on
clothes.

In a nutshell, we present a novel template-free approach,
called MulayCap, for human performance capture with a sin-
gle RGB camera. The use of the multi-layer representations
enables more semantic modeling of human performance,

in which the body, garment pieces, albedo, shading are
separately modeled and elaborately integrated to produce
high quality realistic results. This approach takes full ad-
vantage of high level vision priors from existing computer
vision research to yield high quality reconstruction with
light-weight input. In contrast with the existing human
performance capture systems [4], [5], [6], our fully-semantic
cloth and body reconstruction system facilitates more edit-
ing possibilities on the reconstructed human performances,
such as relighting, body shape editing, cloth re-targeting,
cloth appearance editing, etc., as will be shown later in the
paper.

2 RELATED WORK

While there are a large number of prominent works in
human performance capture, we mainly review the works
that are most related to our approach. We also summarize
other related techniques including human shape and pose
estimation as well as cloth simulation and capture.

Human Performance Capture The research on Human per-
formance capture has been well studied for many decades
in computer vision and computer graphics. Most of the
existing systems adopt generative optimization approaches,
which can be roughly categorized into multiview-RGB-
based methods and depth-based methods according to the
capture setups. On the other hand, based on the represen-
tations of the captured subject, generative human perfor-
mance capture methods can be classified as free-form meth-
ods, template-based deformation methods and parametric-
model-based deformation methods.

For multiview-RGB-based human performance capture
methods, earlier researches focus on free-form dynamic re-
construction. These methods use multiview video input by
leveraging shape-from-silhouette [7], [8], multiview stereo
[9], [10], [11] or photometric stereo [12] techniques. [13] per-
forms video-realistic interactive character animation from a
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4D database captured in a multiple camera studio. Benefit-
ing from the deep learning techniques, recent approaches
try to minimize the number of used cameras (around 4)
[14], [15]. Template-based deformation methods need pre-
scanned templates of the subjects before motion tracking.
They can generate topology consistent and temporally co-
herent model sequences. Such methods take advantage of
the relatively accurate pre-scanned human geometry prior
and use non-rigid surface deformation [16], [17] or skeleton-
based skinning techniques [18], [19], [20], [21], [22] to match
the multi-view silhouettes and the stereo cues. There have
been few studies focusing on temporally coherent shape
and pose capture using monocular RGB video sequences.
Existing works include [1] and [2], where a pre-scanned
textured 3D model is a pre-requisite for both of them. In
their methods, 3D joint positions are optimized based on
the CNN-based 2D and 3D joint detection results. Moreover,
non-rigid surface deformation is incorporated to fit the
silhouettes and photometric constraints for more accurate
pose and surface deformation. In parametric-model-based
deformation methods. The character specific models used in
the methods above are replaced by parametric body models
like [23], [24], [25], [26], [27], [28] to eliminate the pre-
scanning efforts. However, parametric body models always
have limited power to describe the real world detailed
surface of the subject. Overall, as most of the template-
based deformation methods regard the human surface as
a single-piece of watertight geometry, various free-form
garment motion and garment-body interactions cannot be
described by the surface deformation, which also acts as a
key preventer for high quality dynamic texture mapping.

Depth-based methods are relatively more efficient as the
3D surface point clouds are provided directly. Many of the
previous works in this field are free-form approaches, in
which an in-completed template is gradually fused given
continuous depth observations. Such free-from methods
start from the fusion of a general dynamic scene [29], and
have been improved by considering texture constraints [30],
[31] and resolving topology changes [32], [33]. Multiple
depth sensor based fusion approaches [34], [35], [36], [37]
have been developed to improve the robustness and accu-
racy through registering multi-view depth streams. Besides
free-form fusion based methods, performance capturing
using template-based deformation is also a well studied
area. [38], [39], [40], [41] leverage pre-scanned models to
account for non-rigid surfaces, while in [42], [43], [44], [45]
the performance capturing problem is decomposed into
articulated motion tracking and shape adaption. [46] builds
BUFF Dataset which contains high quality clothed 3D scan
sequences of the human, and estimates the human body
shape and pose from these sequences. There are also some
fusion-based approaches combining articulated templates
or articulated priors for robust motion tracking and surface
fusion [47], [48], [49], [50], [51].

Recently, benefiting from the success of deep learning,
discriminative approaches for single image human shape
and pose detection catch lots of research attention. They
have demonstrated that it is possible to estimate the human
shape and pose using only a single RGB image by taking
advantage of the parametric body models [23], [52]. [53] op-
timizes the body shape and pose parameters by minimizing

the distance between the detected 2D joints from a CNN-
based pose detector and the projected 3D joints of the SMPL
model. Follow-up works extend this approach by predicting
the 3D pose and shape parameters directly. [54] proposes a
two-step deep learning framework, where the first step esti-
mates key joints and silhouettes from input images, and the
second step predicts the SMPL parameters. [55] estimates
SMPL parameters through body part segmentation. [56]
uses a 3D regression module to estimate SMPL parameters
and weak camera parameters, and it incorporates an adver-
sarial prior to discriminate unusual poses as well. [57] uses
temporal information to estimate human poses in a video.
[58] leverages both the idea from [56] and [53] and combine
the structures from both for iteratively optimization of the
human model. [59] uses a more expressive model SMPL-X
for the human face and hands. Besides, There are also some
deep learning approaches for estimating the whole human
3D model or frontal depth map from a single image without
using parametric models [60], [61], [62], [63], [64].

Cloth Simulation and Capture The ultimate goal of cloth
simulation and cloth capture is to generate realistic 3D
cloth with its dynamics. Given a 3D cloth model with its
physical material parameters, the task of cloth simulation
is to simulate realistic cloth dynamics even under different
kinds of cloth-object interactions. Classical force-based cloth
simulation methods are derived from continuum mechanics
[65], it can be a mass-spring system [66], [67], [68] or
other more physically consistent models generated by the
finite element method [69], [70]. These methods need to
perform numerical time integration for simulating cloth
dynamics, which include the more straightforward explicit
Euler method [71] and other more stable implicit integra-
tion methods like implicit or semi-implicit Euler method
[65], [72], [73]. The force-based cloth simulation methods can
generate very realistic cloth dynamics benefiting from the
physically consistent models. Note that in our MulayCap,
cloth simulation is especially useful in dressing the naked
body and generating plausible cloth dynamics when only
2D parametric cloth pieces and monocular color video are
available. Since the highly accurate material modeling is not
a requirement of our system, we use the method in [66] for
simplicity and efficiency.

Different from cloth simulation, the cloth capture meth-
ods mainly concentrate on another problem: how to digitize
the real world 3D model and even the real world dynamics
of the cloth. For active methods, [74] custom designed the
cloth with specific color patterns and [75] uses the custom
designed active multi-spectral lighting for accurate cloth
geometry and even material capture. However, the active
methods are much more complex and may not generalize
to off-the-shelf clothes. The passive methods are much more
popular and have been developed using different kinds of
information as input: multi-view rgb [5], [76], [77], 4D se-
quences [6], [78], RGBD [79], [80] or even single RGB [81],
[82], [83], [84], [85], [86], [87]. Among these passive methods,
[76], [77] focus on reconstructing real cloth geometries and
even cloth wrinkle details using temporally coherent multi-
view stereo algorithm and data driven approach. [5] utilizes
the multi-view reconstructed 4D human performances to
reconstruct a physically-animatable dressed avatar. [80] use
a single RGBD camera to accomplish multi-layer human
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Fig. 2. The pipeline of MulayCap. Given the input monocular RGB video, the clothed human reconstruction is achieved by geometry and texture
reconstruction. We first estimate the human pose and shape, and reconstruct the garment-based cloth based on the human model, then apply
non-rigid cloth deformation based on semantic cloth segmentation result. The second step is to use albedo and shading images decomposed from
the input frames to obtain cloth texture, geometry details and lighting, which are then combined for realistic rendering of the dynamic cloth.

performance capture, which benefits from a physics-based
performance capture procedure. Given a high quality 4D
sequence, [6] semantically digitizes the whole sequence and
generates temporally coherent multi-layer meshes of both
human body and the cloth, while [88] propose a multi-
task learning framework for garment fashion landmark
extraction and garment segmentation from an input image,
and can generate garment shape and texture from a single
image. [78] learns a cloth specific high frequency wrinkle
model based on normal mapping and use the model to
wrinkle the cloth under non-captured poses. [84] learns
to reconstruct people in clothing with high accuracy, which
uses a monocular video of a moving person as input. [86]
build a real-time human performance capture system, which
uses RGB video as input and can reconstruct space-time
coherent deforming geometry of an entire human. [85]
learns geometry details from texture map, and can infer a
full body shape including cloth wrinkles, face and hair from
a single RGB image. [87] uses silhouette information of a
single RGB image to infer a textured 3D human model using
deep generative models. [79] is a data driven approach, it
first reconstructs a static textured model of the subject using
RGBD sequence and then performs cloth parsing based on
a pre-designed cloth database for static but semantic cloth
capture; [81] improves [79] by using only a single image.
[82] learns a specific cloth model from a large amount of
cloth simulation results with different bodies and poses, and
uses it to infer cloth geometry directly from a single color
image. Benefiting from the parametric cloth models, [83]
can reconstruct both body shape and physically plausible
cloth from a single image. However, such method mainly
focuses on static cloth reconstruction, thus the cloth dynam-
ics can only be generated by simulation. While Our method
can generate realistic cloth dynamic appearance given a
video sequence. To conclude, on one hand, the data driven

approaches above need either (captured or simulated) high
quality 4D sequences or self-designed cloth databases as
input, which is hard to obtain. Moreover, the generalization
of such approaches remains challenging. On the other hand,
current direct cloth capture approaches still need carefully
designed setups or the heavy multi-view capture systems
for high quality cloth capture. In our system, we use a
data-driven approach to reconstruct static cloth models and
propose a new direct cloth capture approach for capturing
realistic cloth dynamic appearance from a monocular video
footage. There are also many interesting applications of
cloth simulation and capture. For example, [89] proposes
a learning method which compiles 2D sketches, parametric
cloth model and parametric body model into a shared
space for interactive garment design, generation and fitting.
One interesting work correlates to ours is [90], it mainly
focuses on garment replacement (but not capture) given a
monocular video footage and relies on manual intervention.
However, our method is fully automatic and produces both
realistic cloth capture and cloth replacement results.

Intrinsic Decomposition The objective of intrinsic decom-
position is to decompose a raw image into the product of
its reflectance and shading. Because the decomposition of
raw images is insufficiently constrained, optimization based
methods often tackle the problem by carefully designed
priors [91], [92], [93], [94], while deep-learning based meth-
ods incorporate learning from ground truth decomposition
of raw images [95], [96], [97]. There are also sequences
based solutions, using propagation methods [98], [99], [100],
or considering reflectance as static while shading changes
over time [101], [102]. Methods proposed in [103], [104]
leverage multi-view inputs to recover the scene geometry
and estimate the environment lighting.

Intrinsic decomposition has been widely applied for
identifying the true colors of objects and analyzing inter-
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actions with lights in the scene. Researchers have presented
various applications based on the progress in this field, such
as material editing by shading modification and recoloriza-
tion by defining transfer among the origin and the target
reflectance [98]. Since most wrinkles and folds on the cloth
mainly contribute to the shading effects of the input frames,
intrinsic decomposition can be directly incorporated into
our system to recover such details.

3 METHOD OVERVIEW

The main pipeline of our MulayCap consists of two mod-
ules, i.e., multi-layer based geometry reconstruction (see
Sect. 4) and multi-layer based texturing rendering (see
Sect. 5), as shown in Fig. 2. For the geometry module, we
reconstruct a clothed human model for each input video
frame. Each target clothed model contains separated geom-
etry mesh layers for individual garments and the human
body mesh model SMPL [52]. We first detect and optimize
the human shape and pose parameters of SMPL model to
get the body layer (see Sect. 4.1). We select the 2D garment
pattern and automatically dress the human temporal body
models using available cloth simulation methods [105] (see
Sect. 4.2.1). After that, since the garments may not fit with
the input images, we optimize the 2D garment shape param-
eters using all the 2D segmented garment pieces obtained
by instance human parsing methods like [106] from the
video frames (see Sect. 4.2.2). We name this garment shape
optimization method based on cloth simulation as GfV. To
further align the boundary in each temporal image, we re-
fine the non-rigid deformation of the garments based on the
silhouette information in each input image (see Sect. 4.2.3).

For the texture module, to achieve temporally dynamical
and artifact-free texture updating, we composite a static
albedo layer and a constantly updated geometry detail
layer on the 3D garments. The garment albedo layer repre-
sents a clean and shadow-free texture while the geometry
detail layer describes the dynamically changing wrinkles
and shadows. First, based on the obtained clothed model
sequence in the geometry module, we leverage the intrinsic
decomposition method in [95] to decompose the input cloth
images into albedo images and shading images. Multiple
albedo images are then stitched and optimized on the 3D
garment to form a static albedo layer (see Sect. 5.1). For the
geometry detail, we further decompose the shading images
into environment lighting and surface normal images (see
Sect. 5.2). The normal images are then used to solve for
surface details on the 3D garments (see Sect. 5.3). In this way,
by using albedo images to render surface albedo, surface
detail and environment lighting, we achieve realistic cloth
rendering with temporally varying wrinkle details, without
the side effect of stitching texture artifacts.

4 MULTI LAYER GEOMETRY

To elaborate on the geometry reconstruction in MulayCap,
we first describe the reconstruction of body meshes, fol-
lowed by the dressing-on and optimization of the garment
layers.

(a)

(b)

Fig. 3. 2D garment patterns for generating different clothes. (a) The 2D
garment for upper cloth. (b) The 2D garment for pants. The red arrows
and green arrows indicate the parameters for controlling the width and
height of the clothes, respectively.

4.1 Body Estimation

We use SMPL [52] to track the human shape and pose in
each frame. Specifically, We first use HMMR method [107]
to estimate initial pose parameters Pi and shape parame-
ters Si for each frame Ii. All the Si are averaged to get
consistent SMPL shape for the whole sequence. We apply
temporal smoothing to the pose parameters of adjacent
frames to alleviate errors and jitter effects, and replace those
poses with drastic changes by interpolation of their adjacent
poses. We also leverage the 2D joints of humans detect by
OpenPose [108] to further fix the inaccurate pose detected
by HMMR [107] and estimate the global translation of the
human model, by constraining the 2D distance between the
projected 3D joint position and the detect one.

4.2 Garment from Video (GfV)

4.2.1 Dressing
The cloth dressing task consists of two steps: a) garment pat-
tern initialization; b) physical simulation. For reconstructing
garment layers, multiple 2D template garment patterns are
used for different initial 3D garment meshes. Two layers of
garments are used for the upper body and the lower body,
respectively, as shown in Fig. 3. The parameters are defined
as the length of the green and red arrows in Fig. 3, which
leads to 8 parameters for upper cloth and 5 parameters for
pants. The parameters are defined in 2D garment patterns,
inspired by the industry designing pattern of clothes. Each
pattern is composed of a front piece and a back piece. The
sizes of garment pieces are specified by the estimated body
shape automatically. As shown in Fig. 4(e), the initialization
step needs to guarantee the cloth is wide enough to be
dressed on. Therefore, we utilize the length of the torso and
legs of the SMPL model for setting the initial heights for the
2D patterns, and set initial width parameters according to
the bust and waist measurement of the SMPL model with
a scale factor of 1.5, for dressing on the body. After initial-
ization, the 2D garment parameters can be optimized to fit
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(a) (b) (c) (d) (e) (f)

Fig. 4. Garment dressing on T-posed body. (a) The initial state of the dressing process, defined by initial garment parameters. The red arrows
indicates the attractive force defined on the unseamed garment vertexes. (b) The process of seaming the garment. (c) The cloth is seamed and
worn on the body, simulated with gravity and body collision. (d) Resolving garment-garment collision. (e) Simulation result on one of the input frame
based on initial garment parameters. (f) Results after the garment parameter optimization under the same pose of (e).

the real world observations by leveraging both 3D physics-
based simulation and numerical differentiation, which is
detailed in Sect 4.2.2.

To drape the template garments onto a human body
mesh in the standard T pose, we introduce external forces
to stitch the front and back piece using physics-based simu-
lation, as shown in Fig. 4(a)-(e). The details of cloth dressing
and simulation are described below.

For the sake of efficiency, we use the efficient and clas-
sical Force-Based Mass-Spring method of [105] for physics-
based simulation, which treats the cloth mesh vertexes as
particles connected by springs. For cloth simulation, the
external forces applied to each garment vertex include grav-
ity G and the friction between the human body and the
cloth. The collision constraints are added between the cloth
vertices and the human model, and also the cloth itself (e.g.
T-shirt and pants) to avoid inter-penetrations. Specifically,
for each cloth vertex vi, we find its nearest SMPL vertex
pi and calculate the point-plane distance ni(vi − pi). If
the point-plane distance is below zero, we assume that the
collision constraint should be applied to vi. The collision
constraints between overlapping cloth working in a similar
way. For the whole sequence, the physics-based simulation
is conducted sequentially. Specifically, using the draping of
the previous frame to initialize the draping of current frame.

The goal of the dressing step is to seam the two 2D
pieces and stitch them as a complete 3D garment. We use
the mean parameters of our parametric cloth model for
the dressing step, the parameters will be further refined as
described in Sect. 4.2.2. As shown in Fig. 4, to put different
garment elements together on the T-posed human body, we
apply attractive forces on particle pairs at the cutting edges.
After about 300 rounds of simulation, a seam detection
algorithm is performed to detect whether each unseamed
particle-pairs is seamed successfully by detecting whether
the distance between the vertex-pairs to be seamed are all
smaller than a threshold. If not, it means that the initial
garment parameters cannot fit the human body, and thus
will be automatically re-adjusted. For instance, if the upper
cloth cannot be seamed at the wrist part, the algorithm
predicts that the cloth is too tight for the human model, and
the corresponding garment parameters will be updated pro-
gressively until the cloth is successfully seamed, in this case
the parameter for sleeve height will be increased gradually
until the cloth is seamed well.

4.2.2 Garment Parameter Estimation
After the dressing step, we estimate the garment parame-
ters with several simulation passes. In each pass, the cloth
simulation is performed on the whole sequence according
to the estimated body shape and poses from Sect. 4.1. The
optimization is initialized with the garment geometry from
the initial simulation pass.

The garment shape is optimized by minimizing the
difference between the rendered simulation results and the
input image frames. Here we use cloth boundaries in all the
image frames as the main constraints for fitting. Given a set
of garment shape parameters θC , we simulate, render and
measure the following energy function Egarment

Egarment = Ebd + Ereg, (1)

where Ereg = ||∆θC ||2 is used to regularize the updates be-
tween iterations, and Ebd is used to maximize the matching
between the cloth boundaries. For a garment C worn on the
body, Ebd is defined as

Ebd =
∑
k

||Fk(θC)||2

≡
∑
k

||DT (Iimg(C))−DT (Irn(θC))||2,
(2)

where k is the frame index evenly sampled from the input
frames, and Iimg(C) is the segmented cloth from the input
image obtained with the garment instance parsing method
[106], Irn(θC) is the simulated and rendered cloth silhouette
using garment parameters θC , and DT (I) represents the
distance map of the silhouette boundary of image I and is
defined as

DT (I) = max(0,min(εDT , (εDT −C(I)) + (εDT −C(Ī))),
(3)

where εDT is a threshold set as 50. Here C(I) and C(Ī) are
the distance transform from silhouette of image I and its
inverse image, respectively.

Since the rendering results after cloth simulation are also
determined by complex cloth-body interactions, the cloth
vertex position cannot be simply formulated as a function
of θC . To calculate the gradient of the energy term for
Gauss-Newton iteration, we use a numerical differentiation
strategy: given the garment parameters θC , we add a small
value ∆θiC to its ith element, then reset the cloth vertex-
pair constraint based on the new garment parameters, and
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perform the simulation again to calculate the energy for the
new parameters as Fk(θC + ∆θiC). The gradient used for
Gauss-Newton iteration is then calculated as:

∂Fk(θC)

∂θiC
=
Fk(θC + ∆θiC)−Fk(θC −∆θiC)

2∆θiC
. (4)

To be more specific, when generating 3D garments under
new parameters θC + ∆θiC in the kth frame, we first update
the corresponding 2D garment patterns, for the garment
parameters θC are defined on the 2D patterns directly
as shown in Fig. 3. As we cannot change the shape of
the garment mesh directly in the process of physics-based
simulation, we find out that we can directly update the
initial simulation status (including force and vertex-pair rest
length calculated by 2D patterns) of the garment, and per-
form the simulation. In this way, we can generate simulated
garment mesh with new parameters without interrupting
the simulation or performing the cloth dressing again. Fi-
nally, after the simulation has reached a stable state under
the new parameters, we can use it to calculate the energy
functionFk(θC+∆θiC). The update of θC is calculated using
Gauss-Newton method. Note that ∆θiC is only used as a step
value for numerical differentiation, which is not the update
of θC in each iteration. The ∆θiC in our system is set to 0.01.

Our tests show that 25 iterations is generally enough for
the above simulation-and-numerical-optimization method
to converge and get plausible garment shape parameters.
Fig. 4(f) illustrates the garment shape optimization result
over Fig. 4(e).

4.2.3 Non-rigid Deformation Refinement

Note that the garment parameters solved in Sect. 4.2.2 pro-
vides only a rough estimation and the physics-based sim-
ulation cannot describe the subtle movement of the cloth,
such as wrinkles, which are critical to realistic appearance
modeling. We therefore refine the garment geometry using
a non-rigid deformation approach to model dynamic cloth
details. We up-sample the low resolution cloth mesh used
for physics-based simulation to match the pixel resolution
for detailed non-rigid alignment and subsequent geometry
refinement. Here, we use garment boundary to determine
the displacement of each vertex ∆vhi in the high resolution
garment mesh by minimizing the following energy function

Enonrigid = E
(h)
bd + E

(h)
smooth + E(h)

reg. (5)

Here

E
(h)
bd =

∑
i

||DT (Iimg(vi
h+∆vi

h))−DT (Irn(vi
h))||2. (6)

The smoothness term E
(h)
smooth used to regularize the dif-

ference between displacements of the neighboring mesh
vertexes:

E
(h)
smooth = λ

(h)
nearby

∑
i

∑
j∈Ni

||∆vih −∆vj
h||2. (7)

The regularization term E
(h)
reg is defined in the same way as

Ereg to constrain the displacement magnitudes.
The energy function in 5 is minimized using the Gauss-

Newton method. As the energy term is defined either on

(a) (b)

Fig. 5. The results of garment deformation refinement. Both (a) and (b)
show the reconstructed garment meshes overlay on the input image.
Please zoom in to see the overlapping boundaries. (a) The result before
deformation refinement. (b) The result after deformation refinement.

each high resolution mesh vertex, or between nearby ver-
texes, the energy matrix is sparse so that the conjugate
gradient algorithm is used in each Gauss-Newton iteration.
The improvement resulting from refinement by non-rigid
deformation is shown in Fig. 5(a) and Fig. 5(b). See the
zoom-in for detailed boundary overlays. It can be seen that
the boundary overlay of rendered mesh with optimization
in Fig. 5(b) is more accurate than that in Fig. 5(a).

5 TEXTURE AND GEOMETRY DETAIL REFINEMENT

In this section we will consider mapping texture to the de-
tailed garment surface reconstructed in the preceding step.
Note that directly texturing and updating would introduce
serious stitching artifacts due to the spatially and temporally
varying shadings and shadows. To obtain artifact-free and
dynamically changing surface texture, we decompose the
texture into the shading layer and the albedo layer, with the
former for geometry detail refinement and global lighting,
and the latter for generating a static albedo map for the
cloth.

Specifically, for each input image frame I , we use the
CNN-based intrinsic decomposition method proposed in
[95] to get a reflectance image IF and a shading image IS .
We then use IF for garment albedo map calculation and IS
for dynamic geometry detail refinement and lighting esti-
mation. All these three components (i.e. detailed garment
geometry, albedo map and lighting) are then combined to
produce realistic garment rendering.

5.1 Albedo Atlas Fusion

To generate a static albedo atlas on each 3D garment, we
need to keep a optimized texture base for reducing stitching
artifacts and maintaining spatially and temporally consis-
tent texturing. Specifically, for each garment, we build a
texture U-V coordinate domain according to the 2D garment
designing pattern so that each vertex on a reconstructed
garment mesh is assigned to a UV coordinate.

Our albedo fusion algorithm creates the albedo atlas
based on the evenly sampled albedo images IF . As multiple
albedo pixels on different albedo images may project to the
same UV coordinate, a multi-image blending algorithm is
needed for creating a high quality albedo atlas. We resolve
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inpaint

albedo 1 albedo 2 albedo k

combined
albedo map

final albedo
map

Fig. 6. The pipeline of generating the albedo atlas. We iteratively com-
bine albedo maps from evenly sampled key-frames and inpaint the
unseen areas.

this problem by simply using an as-good-as-possible albedo
pixel from the multiple images for obtaining the albedo
atlas. The selection strategy resembles the multiview texture
mapping schemes [109], [110], which try to select the cam-
era that minimizes the angle between the surface normal
direction and the vertex-to-camera direction. To mitigate the
mosaicing seams, we follow the MRF seam optimization
method [111] to remove mosaic seams without affecting the
fine details of the albedo. For areas unseen in the sequence,
we inpaint [112] those areas to obtain a full albedo atlas.
Fig. 6 illustrates the albedo atlas fusion pipeline.

5.2 Shading Decomposition

The goal for shading decomposition is to estimate an inci-
dent lighting L and normal images IN from the shading
image sequence IS . The incident lighting is then used for
shape-from-shading based geometry refinement. Following
the shading based surface refinement approach in [113], we
use spherical harmonics to optimize the lighting L and the
normal image IN by minimizing the energy function

Eshading =
∑
p

||HM (L, IN (p))− IS(p)||2, (8)

which models the different the approximate shadingHM by
spherical harmonics and the observed shading IS over all
the pixels p that belong to a garment in an image frame.

We get a normal map from the recovered garment sur-
face for lighting optimization, which is a better initialization
than uniform normal map initialization. To improve accu-
racy, we select multiple key frames to enrich the variance
of surface normals as done for the albedo atlas generation
step in Sect. 5.1, and estimate the lighting using the least
square method over all the pixels in these frames. We select
key frames in an iterative manner. Specifically, if the pose
difference between the current frame and all the previously
selected key frames is larger than a threshold, we add the
current frame as a new key frame; the iteration is stopped
when no new key frame can be added. In our experiments,
we mainly focus on the torso movements and the threshold
is set to be 0.5 for average angle-axis Euler distance among
torso joints defined by SMPL model. To constrain the range
of normal estimation, we regularize Eshading and minimize

the energy function Enormal based on the estimated lighting
L by minimizing the following energy

Enormal = Eshading + ELap + Egrad + Enorm. (9)

Here:
regularization term

Egrad = λgrad
∑
p

||∆n(p)||2 (10)

is used to constrain the updating step.
Laplacian term

Elap = λlap
∑
p

||Avgp′∈Npn(p′)− n(p)||2 (11)

is used to constrain the smoothness of the normal image,
where Np is the set of p’s neighbor pixels.

normalization term

Enorm = λnorm
∑
p

||n(p)T n(p)− 1||2 (12)

is used to constrain the normal at every cloth pixel p to be
normalized.

5.3 Geometry refinement using shape-from-shading

So far, we have obtain the incident lighting of the scene.
Then we use the shape-from-shading approach to refine
the geometry detail using both lighting and shading image
sequence IS to represent wrinkles and folds for realistic
rendering. Benefiting from the proposed multi-layer rep-
resentation and physics-based optimization, we can obtain
more reasonable garment geometry as the initial status for
this geometric detail refinement step. To compute the per-
vertex displacement of cloth, we first formulate its normal
as follows,

nk = norm(
∑
j∈Nk

(vj − vk)× (vj+1 − vk)) (13)

where Nk is the set of vk’s neighbors in clockwise order.
Then we can formulate the energy term for the shape-from-
shading based geometry refinement as follows,

Esfs = Eshading + Enearby + Egrad (14)

where

Eshading =
∑
k

||HM (L, nk(∆~v))− IS(p)||2 (15)

where ~v represents the shifting of all the vertexes, Enearby

is the same as in Sect. 4.2.3, and Egrad is for the constrain-
ing updating magnitude. Noticing that our reconstructed
human contains two layers, i.e., cloth layer and body
layer, therefore, traditional shading-based geometry detail
enhancement approaches [114] cannot be directly applied,
as geometry refinement on the cloth layer may produce pen-
etration or collision with the body layer. To solve this chal-
lenge, we propose an iteration optimization approach, by
performing shape-from-shading detail enhancement, with
physics-based collision detection and resolving in each iter-
ation step. After each physics-based collision resolving, we
guarantee penetration-free reconstruction results.
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Fig. 7. The example result of geometry refinement. From left to right: input RGB image, garment geometry before detail refinement, garment
geometry with shape refinement, two garment shapes from another point of view, rendered results without shape refinement procedure, our results.

As shown in Fig. 7, without geometry refinement, the
garment geometry lacks details. Meanwhile, after geometry
refinement, detail wrinkles and folds can be reconstructed
from the input image, making the reconstructed geometry
more accurate.

In order to improve the ability of geometry detail rep-
resentation and time consistency of our dynamic garment
reconstruction, we place the vertex displacement in its local
coordinate system defined by its normal and neighbor ver-
texes, which is also used in estimating the displacement of
invisible vertices. Note that the motion of each vertex can
be decomposed into two parts, namely, the global garment
motion by body-garment simulation (see Sect. 4.2.3) and the
local details that cannot be described by simulation. For the
invisible vertices, we assume that their local details remain
unchanged. Specifically, we calculate the global rotation R
of the vertex from its value in the visible frame according to
the simulated normal orientation, and transform the vertex
shifting according to the global rotation to maintain its local-
coordinate parameters unchanged. For each temporal frame,
we finally add a spatial smooth filtering over the boundaries
between the visible and invisible regions, to mitigate the
spatially inconsistent seam artifacts.

Finally, given a camera model, as the incident lighting,
surface albedo and dynamic geometry details have already
been obtained, we render the realistic clothed human perfor-
mances using spherical harmonics rendering models [115].

6 EXPERIMENTS

In our experiments, we use monocular RGB videos from
both the internet and our own cameras containing casual
human motions, including walking, playing soccer, speech,
exercising, dancing, etc. The human clothing includes pants,
trousers, long-sleeve/short-sleeve T-shirt and shirt, which
are represented by our designated 2D garment patterns.

Besides human instance parsing and intrinsic decompo-
sition, the main pipeline takes around 12 hours to process
a sequence of 300 frames on a 3.4GHz Intel Xeon E3-1231
processor and an NVIDIA GeForce GTX 1070 GPU. Specif-
ically, the pose and shape estimation takes approximately
15 minutes, garment parameter estimation takes 2 hours
for 20 iterations of parameter optimization using every
key frame and garment deformation refinement takes 10-12
seconds per frame. After obtaining the deformed mesh, the
albedo atlas fusion step takes 10 minutes for cloth albedo
generation, and geometry refinement takes 100-120 seconds
per frame by using cuSPARSE toolkit.

6.1 Qualitative Results

To evaluate our method, Fig. 1, Fig. 8 and the supple-
mental video provide the reconstruction results of captured
sequences from a monocular video camera, which show
that our method is capable of generating plausible human
performance capture results with detailed wrinkles and
folds, as a benefit of the proposed decomposition-based ge-
ometry and albedo refinement method. Note that for the two
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Fig. 8. Some reconstruction results in our test sequences. Each pair of result contains the original image on the left and the result on the right.

sequences in the bottom row of Fig. 8, the human characters
only perform motions facing to the camera view, without
capturing his/her back with turning motions. Nevertheless,
our method still generates high quality results for these
kinds of motions.

As the albedo map and dynamic geometry details for
the cloth mesh are maintained during motion, we can
generate free-viewpoint rendering results for the clothed
human model. Fig. 9 shows the 360-degree free-viewpoint
rendering of the human, where the cloth details are distinct
in different viewpoints. Note that in the second and the
last examples of Fig. 9, the person only shows his front in
the whole sequence, but with cloth simulation, we can still
render plausible results from the other unseen viewpoints.

6.2 Comparisons
We compared our human performance capture results with
[116] and typical template-based deformation methods [38],
[39] using a commercial RGBD camera, as shown in Fig. 10
and the supplemental video. The video avatar reconstruc-
tion method in [116] takes a single view video of human
performance as input, and rectifies all the poses in the
image frames to a T-pose for bundle optimization of shape.
However, the subject needs to perform the restrictive move-
ment to allow accurate shape reconstruction. So it fails to
work for other more generate shapes, poses and dynamic
textures, as shown in Fig. 10(a). In contrast, our method
works robustly even when subjects perform more casual
motions with natural cloth-body interaction and dynamic
texture details.

Fig. 10(b) shows the comparison with typical template-
based deformation approach [38], [39]. The result on the left
is obtained by first fusing the geometry and texture using
the DoubleFusion [49] system, followed by skeleton driven
non-rigid surface deformation to align with the depth data
and the silhouette. As shown in Fig. 10(b) and the video, the
texture of such non-rigid reconstruction is static, so it cannot
dynamically model changing surface details. In contrast,
our method is able to capture the dynamical winkles and
produce more plausible garment deformations.

We also make a comparison with a model-based ap-
proach [88] on our data. As their method takes only one
picture as input, we also take only one picture and feed it
into our pipeline for a fair comparison. Notice that [88]
generates T-pose garment mesh only. As shown in Fig. 11,
regarding to the garment geometry, [88] generates an over-
smoothed surface of the garment without detailed wrinkles
and folds, and the shape of the cloth does not fit the in-
put image accurately. Meanwhile, our method successfully
recovers the geometric details and produce much more
realistic rendering results.

We also make a quantitative evaluation on BUFF
Dataset [46] and compare MulayCap quantitatively with
PIFu [60], which is deep learning method for reconstructing
clothed human body from a single image, also without a
pre-scanned template. The reconstruction results and the
per-vertex average error is shown in Fig. 12. As shown in
Fig. 12(a), benefiting from our multi-layer representation
of the model and physics-based cloth simulation, we can
generate high-frequency details of the cloth, both on the
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Fig. 9. Free-viewpoint rendering of different human models. From left to right: input images, reconstructed models from the captured views, and the
reconstructed models in two virtual views.

(a) (b)

Fig. 10. Comparison with [116] and [49]. (a) From left to right: [116] result, input frame, our result. (b) From left to right: result by a typical non-rigid
surface deformation approach using a commercial depth camera [49], input frame, our result.

Fig. 11. Comparison with [88]. From left to right: input image, rendered
garment and garment geometry generated by our method, rendered
garment and garment geometry generated by [88]. Notice that [88]
generates T-pose clothing output.

front and back. The pose estimated is also consistent with
the input image. Meanwhile, although the model generated
by PIFu [60] looks plausible from the front view, we can
see that it actually generates a wrong pose of the human,
also the texture on the back is not so vivid neither realistic.
The comparison with PIFu [60] can be regarded as a typical

comparison between the model-based methods and data-
driven generative methods. Benefiting from other model-
based methods like HMMR [57], we can generate more
robust and accurate garment results. On the contrary, the
implicit representation of PIFu [60] limits its ability of using
model-based priors, leading to unrealistic human pose and
texture generated.

As for quantitative experiments, we first put the model
from both PIFu [60] and MulayCap into a consistent coordi-
nate with the ground truth 3D model of BUFF Dataset [46],
and then align the models with the ground truth one using
ICP for solving the scale and relative transition of the
models. The error is evaluated using the nearest-neighbor
L2 distance. Fig. 12(b) shows that the per-vertex error of
PIFu [60] is larger than MulayCap in most frames of an
input video sequence rendered from BUFF Dataset [46],
which shows that with our multi-layer human performance
capture method, we can generate more accurate results than
the one generated using an end-to-end network.

6.3 Applications

With our proposed multiple-layer modeling for human
performance capture, our method produces fully-semantic
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(a) (b)

Fig. 12. Qualitative and quantitative comparison with PIFu [60] using rendered 4D model in BUFF Dataset [46] as input. (a) From left to right:
rendered human model, reconstruction results from different viewpoints by MulayCap and PIFu [60], error map. (b) Quantitative comparison between
two methods in one 4D sequential using per-vertex average error.

reconstruction and enables abundant editing possibilities in
the following applications.

Garment Editing. Since in our method semantically mod-
els garments on the shape and texture, garment editing in
terms of shape or texture can be achieved, as demonstrated
in Fig. 13. Garment shape editing (upper row) allows the
change of the length parameters of the T-shirt sleeve and
the trousers so that the human performance of the same
character with new clothing can be obtained. By combining
a new albedo color of the cloth with the original shading
results, we can render realistic color editing results for the
reconstructed human performance as shown in the bottom
row.

Retargeting. After the cloth shape and albedo have been
generated for a sequence, we can retarget the clothing
to other human bodies. Recall that the human models
represented by SMPL model, which guarantees topology-
consistency between different human models. So we can
calculate a non-rigid warp field between the two human
bodies with different shapes but the same pose, and adopt
this warp field for cloth vertex mapping between the two
models. The result is shown in Fig. 14, where two target
body shapes are used for the retargeting application.

Relighting. Given albedo and detailed geometry with
wrinkles and folds of the garment, we can generate relight-
ing results for the captured sequence. As shown in Fig. 15,
we put the character in four different environment illumi-
nations and apply the relighting using spherical harmonic
lighting coefficients generated by the cube-map texture.
The albedo and geometry details are consistent in different
lighting environments.

Augmented Reality. As we can automatically generate
4D human performance with only RGB video, it can be
integrated into a real video for VR/AR applications. Given
a video sequence of a particular scene as well as the camera
positions and orientations in each frame, we can render the
human performance at a particular location in the scene.
With AR glasses such as Hololens, observers can see human

Fig. 13. Garment editing results. The upper row is garment shape editing
and the bottom row is for garment color editing. From left to right: input
RGB frames, reconstructed results, results with shape editing and color
editing.

performance in any viewpoint. The examples of such mixed-
reality rendering are shown in Fig. 16 and the supplemental
video.

7 CONCLUSION

In this paper, we present a novel method, called MulayCap,
based on a multi-layer decomposition of geometry and
texture for human performance capture using a single RGB
video. Our method can generate novel free-view rendering
of vivid cloth details and human motions from a casually
captured video, either from the internet or video captured
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Fig. 14. Clothing retargeting between different human bodies. From
left to right: reconstructed clothed human models, and two retargeting
results using a taller thin body shape and a fatter body shape.

Fig. 15. Relighting results in four different environmental illumination
maps from [117].

by the user. There are three main advantages of MulayCap:
(1) it obviates the need for tedious human specific template
scanning before real performance capture and still achieved
high quality geometry reconstruction on the clothed human
performances. This is made possible through the proposed
GfV method based on cloth simulation techniques for esti-
mating garment shape parameters by fitting the garment
appearance to the input video sequence; (2) MulayCap
achieves realistic rendering of the dynamically changing

Fig. 16. Two frames of an augmented-reality application. We estimate
the camera parameters using [118] and render the clothed human
performance on the desk.

(a) (b)

(c) (d)

Fig. 17. Illustration of the failure case. (a) The input image. (b) The
decomposed albedo image. (c) The decomposed shading image. (d)
The rendered result.

details on the garments by using a novel technique of de-
coupling texture into albedo and shading layers. It is worth
noting that such dynamically changing textures have not
been demonstrated in any existing monocular human per-
formance capture systems before; finally (3) benefiting from
the fully semantic modeling in MulayCap, the reconstructed
4D performance naturally enables various important editing
applications, such as cloth editing, re-targeting, relighting,
etc.

Limitation and Discussion: MulayCap mainly focuses
on the body and garment reconstruction, while the other se-
mantic elements like head, facial expression, hand, skin and
shoes would require extra efforts to be handled properly.
Another deficiency is that the body motion still suffers from
jittering effects, as the body shape parameters are difficult
to be accurately and smoothly estimated from the video
based on the available human shape and pose detection
algorithms [107]. As a consequence, we cannot handle fast
and extremely challenging motions, as the pose detection
on challenging motions contains too many errors for cloth
simulation and garment optimization. Also, although our
system is robust for common cases, our cloth pattern cannot
handle all possible clothes or clothes with non-common
shapes.

In addition, in our pipeline, the qualities of the albedo
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and shading image are crucial for the final rendering results,
which may be affected by the performance of intrinsic
decomposition methods to a certain extent. For garments
with complex texture patterns such as the lattice T-shirt
shown in Fig. 17, existing intrinsic decomposition methods
can hardly produce accurate results. In our case, since the
shading image extracted by [95] still contains much albedo
information, the geometry detail solved by our system is
messed with albedo information, as shown in Fig. 17. As
most of the existing intrinsic decomposition methods are
intended for general scenes, a novel intrinsic decomposition
method particularly designed for garments may further
improve the shading and albedo estimation in our task.

As for the future work, a more precise human per-
formance capture including hands, skins, shoes, etc., as
well as a variety of garment patterns like skirts, coats, etc.
are promising directions to be explored. Along with the
booming of single image human body estimation research
[57], [119], research attentions can be directed on how to
achieve jittering-free motion reconstruction to handle more
challenging motions. Overall, we believe that our paper
may inspire much follow-up research towards improving
the quality of convenient and efficient human performance
capture using a single monocular video camera, thus facili-
tating and promoting applications of consumer level human
performance capture.
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[100] A. Meka, M. Zollhöfer, C. Richardt, and C. Theobalt, “Live
intrinsic video,” ACM Transactions on Graphics (TOG), vol. 35,
no. 4, p. 109, 2016.

[101] Y. Matsushita, S. Lin, S. B. Kang, and H.-Y. Shum, “Estimating
intrinsic images from image sequences with biased illumination,”
in European Conference on Computer Vision. Springer, 2004, pp.
274–286.

[102] P.-Y. Laffont and J.-C. Bazin, “Intrinsic decomposition of image
sequences from local temporal variations,” in Proceedings of the
IEEE International Conference on Computer Vision, 2015, pp. 433–
441.

[103] P.-Y. Laffont, A. Bousseau, and G. Drettakis, “Rich intrinsic image
decomposition of outdoor scenes from multiple views,” IEEE
transactions on visualization and computer graphics, vol. 19, no. 2,
pp. 210–224, 2013.
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