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Function4D: Real-time Human Volumetric Capture from

Very Sparse Consumer RGBD Sensors

A. Overview
This supplementary document provides more details

about the comparisons (Sec.B) and evaluations (Sec.C) in
the paper. Please also refer to the supplementary video for
more clear demonstrations.

B. Comparison Details
To better evaluate the effectiveness of our method, we

compare with both the state-of-the-art volumetric fusion
methods (Motion2Fusion and UnstructuredFusion) and the
state-of-the-art learning-based 3D human reconstruction
methods (PIFu, IFNet and IPNet).

B.1. Comparison with Volumetric Fusion Methods

We first compare with the state-of-the-art volumetric fu-
sion method of Motion2Fusion [5] qualitatively. The imple-
mentation used to generate the results of Motion2Fusion [5]
is an improved version made by the original author. Specif-
ically, the final SDF values in Motion2Fusion are solved by
a Poisson equation with the normal constraints instead of
weighted averaging. This causes blob artifacts for depth
off the surface. Apart from the artifacts, we notice that
Motion2Fusion has limited capacity to track the challeng-
ing non-rigid motions and topological changes using very
sparse consumer sensors, thus producing severely erroneous
surfaces when tracking fails.

To further demonstrate the effectiveness of our method,
we also compare with UnstructuredFusion [11] qualita-
tively in the supplementary video, which also uses sparse
consumer depth sensors for volumetric performance cap-
ture. Note that UnstructuredFusion does not support multi-
person reconstruction, so we compare with UnstructuredFu-
sion using a single-person sequence. Based on a paramet-
ric model of human body (SMPL [8]), they eliminate the
requirement for explicit multi-camera calibration and gen-
erate plausible dynamic 3D reconstruction results for tight-
clothed humans. However, the incorporation of the para-
metric model restrict UnstructuredFusion from handling
topological changes and more general clothes. More im-
portantly, when severe tracking failure happens, it is hard

Figure A: Qualitative comparison with Multi-view PIFu and IP-
Net. From (a) to (e) are the ground truth model, the results of
Multi-view PIFu, the outter layer and inner reconstruction results
of IPNet, and our results, respectively.

for UnstructuredFusion to recover from it efficiently, which
finally leads to unstable reconstruction results under fast
motions. Please refer to the supplementary video for the
qualitative comparison with Motion2Fusion and Unstruc-
turedFusion.

1



B.2. Comparison with Learning-based Methods

We compare with the state-of-the-art learning-based 3D
human reconstruction methods (PIFu [9], IFNet [2] and IP-
Net [1]) both quantitatively and qualitatively to demonstrate
the effectiveness of our networks. All of the 3 methods are
specifically designed for learning-based 3D human recon-
struction. Specifically, PIFu uses multi-view RGB images
as input while IFNet and IPNet uses point cloud as input.
Note that IPNet further improves IFNet by incorporating the
parametric model for constraining a multi-layer surface re-
construction process. The quantitative comparison can be
found in the Table.1 of the main paper, and the qualitative
comparison is shown in Fig. A. We can see from the com-
parisons that our method outperforms all of the 3 methods
mentioned above both qualitatively and quantitatively. To
conclude, our method is not only more accurate (for multi-
view RGB-D input) and robust (generalize well to different
large poses and cloth styles), but also much more efficient
(orders of magnitude faster than existing methods, real-time
run-time efficiency) than existing methods. Next, we will
introduce the metrics and implementations corresponding
to this comparison in detail.
Metrics For quantitative evaluation on geometry recon-
struction, we firstly randomly sample 100K points from
the reconstructed surface and the ground truth surface, and
then construct a KD-tree to estimate the corresponding dis-
tances. We calculate three different metrics: average point-
to-surface Euclidean distance(P2S) from the sampling ver-
tices on the reconstructed surface to the ground truth mea-
suring the accuracy of the surface (lower is better), the
Chamfer-L1 distance defined as the mean of an accuracy
and a completeness metric (lower is better), and a normal
consistency score as the mean absolute dot product of the
normals in one mesh and that at the corresponding nearest
neighbors in the other mesh, measuring the accuracy of the
shape normal (higher is better).
Implementation Details Tab.1 shows the quantitative com-
parison on geometry reconstruction between the proposed
GeoNet, Multi-view PIFu[9] (with RGB images as input)
and IPNet[1] (with voxelized point clouds as input). The
two baseline methods are also based on implicit func-
tions and multi-view information to reconstruct complete
meshes. We retrain Multi-view PIFu (using perspective
projection model) and IPNet using our training dataset and
perform evaluation on a testing dataset which contains 116
high-quality scans with various poses, clothes and human-
object interactions.

For point sampling during the training stage, we use the
gradient-based point sampling strategy for recovering more
surface details. Specifically, for each scan, we first calcu-
late its Discrete Gaussian Curvature using the method in [4]
with radius 0.002. And in each training pass, we sample
5000 points which contains 2500 high-curvature-points and

Figure B: For each subject, we demonstrate the results of dynamic
sliding fusion(DSF)(left), the results of the DSF with Screened-
Possion-Surface-Reconstruction(SPSR) [6](middle), and the re-
sults produced by our method(right).

2500 free-sampled points (in which the curvature threshold
for filtering high-curvature nodes is set as 0.004).

For the comparison with multi-view PIFu, we also use
HRNetV2-W18-Small-v2[10] (with the same feature map
resolution 64 × 64) as the backbone. Different from our
implementation (in which the output channel number is 32
for the GeoNet), we use 256 channel feature map for multi-
view PIFU to keep consistent with [9]. In Table 1, we can
see that even with much less feature dimension, our GeoNet
still achieves much better results. It fully demonstrates that
our model can learn more depth-relevant and fine-grained
information with the help of the truncated PSDF values in
the encoding stage.

The IPNet is derived from IFNet[3] with point clouds
in 3D volume as input and the same multi-scale 3D CNN
as encoder to extract volume features and implicit function
to learn the SDF volume. For training IPNet, we strictly
follow [1] to make training dataset containing SMPL reg-
istered scans with our dataset. From the results in Table 1,
we can find that IPNet produces better results than multi-
view PIFU benefiting from the strong capacity of 3D CNN
and multi-view depth inputs. However, due to the heavy de-
pendency on exact SMPL inner bodies as the ground truth
(which is very hard to acquire especially under large poses
and human-object interactions), the reconstruction accuracy
of the IPNet is still lower than ours.

To conclude, the lack of depth information deteriorates
the reconstruction accuracy of Multi-view PIFu. Moreover,
even with multi-view depth images as input, the limited fea-
ture resolution and heavy dependency on accurate SMPL
fitting restricts the IPNet from generating highly accurate
results. Finally, by explicitly encoding depth observations
using truncated PSDF values, the proposed GeoNet can not
only achieve accurate reconstruction results, but also orders
of magnitude faster than current methods.

B.3. Comparison with Raw Fusion Results and
Classical Surface Completion Methods

Without implicit surface reconstruction, the raw fusion
results (output of the dynamic sliding fusion step) will not
be complete (especially under very sparse views) due to
self-occlusions and missing observations as shown in Fig.2
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of the main paper (the red-colored model) and Figure. B at
here. Moreover, the traditional surface in-painting methods,
like Screened Poisson Surface Reconstruction (SPSR), may
fail on hole filling(Figure. B(the red circle on the left)) and
hallucinates wrong geometries(Figure. B(the red circle on
the right)) even given the raw fusion results from the DSF.

C. Evaluation Details of the Proposed Method
Evaluation of the Truncated PSDF Feature For quan-
titative evaluation of the truncated PSDF values, all the
networks are trained with the same training settings using
the same training dataset (containing 500 scans), and fi-
nally evaluated in the same testing dataset containing 116
scans. Tab.2 in the main paper shows that without us-
ing the truncated PSDF feature, the depth-only model and
RGBD model produce similar results, which indicates that
explicit PSDF information is more important to discrimi-
nate whether the point is inside or outside of the observed
surface.
Evaluation of Dynamic Sliding Fusion To better evaluate
the proposed dynamic sliding fusion method, we provide a
video comparison in the supplementary video. We show the
final reconstruction results of 2 kinds of multi-view depth
inputs: (a) using the original captured multi-view depth
images as input, and (b) using the re-rendered multi-view
depth images from dynamic sliding fusion as input.

Note that without dynamic sliding fusion (setup (a)), the
depth observations corresponding to different viewpoints
may not be consistent with each other due to sensor noise,
missing observations and spatial distortions, and this leads
to noisy and incomplete reconstruction results. By fusing
multi-view depth images in a sliding window into the TSDF
volume non-rigidly (setup (b)), we can guarantee that the re-
rendered multi-view depth images not only contain much
less noise, but are also consistent across different view-
points. As a result, by using the dynamic sliding fusion,
we can generate more complete and noise-suppressed re-
construction results as shown in the supplementary video.

C.1. Network Training Losses

Regarding to the losses for training the GeoNet and the
ColorNet, we follow Monoport [7] to use the Binary Cross
Entropy loss and the L1 loss, respectively. The training of
the GeoNet takes 12 hours in total (approximate 30 epochs
in total), and the training of the ColorNet takes 36 hours in
total (approximate 30 epochs in total).
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