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DeepCloth: Neural Garment Representation for
Shape and Style Editing

Zhaoqi Su, Tao Yu, Yangang Wang, Member, IEEE, and Yebin Liu, Member, IEEE

Abstract—Garment representation, editing and animation are challenging topics in the area of computer vision and graphics. It
remains difficult for existing garment representations to achieve smooth and plausible transitions between different shapes and
topologies. In this work, we introduce, DeepCloth, a unified framework for garment representation, reconstruction, animation and
editing. Our unified framework contains 3 components: First, we represent the garment geometry with a “topology-aware UV-position
map”, which allows for the unified description of various garments with different shapes and topologies by introducing an additional
topology-aware UV-mask for the UV-position map. Second, to further enable garment reconstruction and editing, we contribute a
method to embed the UV-based representations into a continuous feature space, which enables garment shape reconstruction and
editing by optimization and control in the latent space, respectively. Finally, we propose a garment animation method by unifying our
neural garment representation with body shape and pose, which achieves plausible garment animation results leveraging the dynamic
information encoded by our shape and style representation, even under drastic garment editing operations. To conclude, with
DeepCloth, we move a step forward in establishing a more flexible and general 3D garment digitization framework. Experiments
demonstrate that our method can achieve state-of-the-art garment representation performance compared with previous methods.

Index Terms—garment digitization, garment representation, 3D reconstruction and animation.

✦

1 INTRODUCTION

3D garment representation, modeling, editing and anima-
tion/simulation have numerous applications in clothing design,

digital humans, and virtual try-on. Traditional high-fidelity 3D gar-
ment modeling and animation often rely on artist design or heavy
simulation methods, such as physically based simulation [1],
which consume enormous labor costs or computational resources.
In recent years, neural garment representations based on deep
learning techniques have achieved impressive garment modeling
or animation results [2], [3], [4], [5], [6], [7]. However, the major-
ity of these methods either focus on encoding garment dynamics
for specific clothing (clothing-specific learning) or aim at 3D
clothing recovery from images without any editing capacities.
This is because establishing a unified framework for shape/style
editable garment representation, reconstruction and animation
remains challenging. Although the most recent neural garment
modeling/animation work TailorNet [8] achieves impressive de-
tailed clothing dynamics recovery for different human shapes
and poses, it still defines garments on top of a predefined fixed
template, in which the garment topology is fixed. Such a fixed
representation limits its ability to achieve an ideal garment editing
framework, e.g., enabling transition from long pants to shorts
or from front-opening T-shirts to front-closing shirts. Concurrent
work [9] by Corona et al. focuses more on establishing garment
shape/style representations and less on shape-/style-dependent
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Fig. 1. Our neural garment representation framework, DeepCloth, en-
ables garment reconstruction (b), shape editing (c) (from close to open,
from short to long, from loose to tight, etc.) and animation (d,e) (with
garment-specific dynamics even after significant topological editing of
the garment) given a 3D scan with arbitrary pose (a).

garment animation based on their styles, while our method further
proposes a garment shape-dependent animation module, which
shows more dynamics while performing animation with different
garment styles.

In this paper, we argue that it is essential to learn a compact
and uniform space for garments with different shapes and styles,
which will form a unified garment representation framework, and
then be further used for garment reconstruction and animation.
Such a representation should enable free and smooth style transi-
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tions between different garment shapes and styles, even for gar-
ments with different topologies, e.g., from front-opening clothes
to front-closing clothes. By transferring the garment representation
into a neural feature space, and mapping the 3D scanned garment
mesh into the same feature space, such a representation can also
be used to perform garment animation and 3D garment shape
editing using deep neural networks as demonstrated in Fig. 1.
However, fulfilling such a representation is challenging due to the
large topological changes and nonuniform latent space encoding.

In this paper, we propose DeepCloth, a unified framework for
garment representation, reconstruction, animation and editing by
assembling different garment shapes and topologies into a unified
representation framework. Technically, we propose a “topology-
aware UV-position map” representation to encode both the topolo-
gies and the geometric details of garments. To achieve plausible
garment transitions under different topologies, we transform the
UV binary mask into a continuous distance map. By encoding the
UV-position map with a transformed mask into a feature space
using our proposed ParamNet, we can represent garments with
different shape styles and topologies in a unified network and thus
achieve flexible garment editing and continuous shape and style
transitions between different garments by feature interpolation
and decoding. As the “UV map” is widely used to represent 3D
shapes (such as Tex2shape [10] for human modeling), we believe
that our introduction of the “topology-aware-mask” for UV-map-
representation, as well as the demonstration of neural shape editing
capacity, may inspire future 3D mesh/shape/texture editing studies
related to the use of UV maps.

With our deep learning network trained on the large-scale
synthetic dataset of 3D clothed human sequences with various
garment styles, i.e. CLOTH3D [11], we can parameterize clothing
shape variations of front-opening T-shirts, T-shirts, shirts, pants,
skirts, dresses, and jumpsuits. Additionally, with our proposed
animation module AnimNet and 3D-shape inference module
3DInferNet, DeepCloth can generate 4D sequences of garment
dynamics (see Fig. 1(d,e)) or extract the clothing shape parameters
from a clothed human model under arbitrary poses (see Fig. 1(b)),
which enhances its ability for 3D clothing shape editing (see
Fig. 1(c)). The main contributions of this work are summarized
as follows:

• We propose a unified garment modeling framework based
on a UV-mask garment representation, which further en-
ables garment reconstruction, animation and editing.

• We propose a topology-aware continuous UV-mask neural
garment representation and encode such representation
into a unified continuous feature space, which enables
joint learning of both the 3D position and the topology
of the garments, and neural control of garment shape and
topologies. (Sect. 4, 5)

• By mapping the garment 3D information onto the garment
feature space, or unifying the proposed garment repre-
sentation with human shape and pose information, we
can perform garment shape reconstruction and animation
based on our neural garment representation, which can
generate plausible garment dynamics even under drastic
garment editing operations. (Sect. 6, 7)

2 RELATED WORK

There are numerous works on garment representation, animation
and reconstruction. Here, we mainly review the works that are

most related to our approach.
Garment representation and animation. There are essen-

tially three approaches for garment animation: physics-based
simulation (PBS), data-driven methods, and animation based on
capture.

For physics-based simulation (PBS), traditional physics based
garment simulation formulates the garment as a mass-spring sys-
tem with force-based simulation [1], [12], [13] or other physical
models based on the finite element method [14], [15], with
the explicit Euler method [16] or implicit/semi-implicit Euler
method [16], [17], [18]. These methods can generate realistic
clothing with vivid dynamics given a designed garment shape and
garment template, but mostly incur considerable computational
costs for numerous integration iterations for clothing dynamics,
and cannot perform a more general shape control of the garment.

Data-driven methods aim to shorten the computational time
for garment animation with a more flexible garment represen-
tation. Early methods such as [19], [20], [21] use a nearest
neighbor search or linear regression to animate clothing on the
human body with different poses and shapes. Recent works
have mainly adopted deep learning methods to perform garment
animation. [22] learns a shared space for garment style variation,
and can predict garment shape from a user sketch with a fixed
pose. [23], [24] regress the garment shape with various human
poses and shapes with MLP or RNN methods. [3], [4], [25]
propose garment animation by 3D garment draping or SMPL-
based garment deformation, using a graph convolution network
to obtain garment shapes worn on a human model with different
shapes and poses. [2], [5] propose pixel-based garment 2D rep-
resentation based on texture mapping on a human model or on a
template-based texture space, which is similar to our representa-
tion method, but they cannot generate the shape parameters of the
garments. [26] leverages the human parsing of the image to mask
the UV-map representations of garments and controls the garment
shape by editing the masks. However, without compact encoding
of the garment representation UV map and masks, it barely
performs continuous garment style transition, and the garment
animation can only be performed through skinning, without lever-
aging the masks to infer shape dynamics. Additionally, it cannot
represent garments that are not homotopy to human models such as
dresses. [7] can interpolate between different garment styles, but it
can only interpolate the “sewing patterns”, meaning that [7] only
interpolates the area of the body covered by the garments, without
a general shape parametrization framework for generating more
garment shapes. These methods use garment vertices, graph-based
garment representation or pixel-based garment representation to
perform garment animation but lack garment shape parametriza-
tion modules for flexibly and conveniently controlling the garment
shape. In addition, in regard to computer vision tasks such as
relighting on clothed humans, [27] proposes a novel approach for
representing the lighting environment and view visibility in UV
space, which leverages the flexibility of UV representations for
performing realistic and high-quality relighting and view synthesis
on real captured data of humans.

For garment animation based on real capture, this kind of
method for garment animation focuses on recovering the static
or dynamic garment shape from a given picture or video. [28],
[29], [30] recover garment shapes from multiview stereo, [2], [31]
recover garment dynamics from 4D sequences, [32], [33] propose
a system for garment shape recovery from a single RGBD camera,
while [34] proposes a method for extracting the garment template
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Fig. 2. The demonstration of our DeepCloth framework. From left to right: garment representation, garment reconstruction and garment animation
module.

shape and recovering garment dynamics from a single RGB
input. Recently, [35] propose a method for extracting multiple
garments from several input images and dressing them on other
human bodies, while [36], [37] propose a CNN-based method
for recovering the human shape and pose. Such methods express
the garment as a deformation of the subset of the human model,
and it is difficult to express more types of garments like dresses
and loosened front-opening clothing. Alldieck et al. [10] proposes
a 2D texture-based human with a garment shape representation
method for recovering the whole shape from a single image. [38],
[39] propose monocular human performance capture methods that
can recover human motion and garment geometry details, given
monocular RGB video inputs. These methods mainly focus on
recovering garment shapes from input images, without proposing
a general garment shape representation framework.

Garment shape parametrization. Recently, a few works
focus on establishing a garment shape parametrization framework.
Shen et al. [7] demonstrates the garment style interpolation results,
but it only controls the change of the covering area on the human
body, without generating a general shape expression. Tiwari et
al. [6] proposes a framework for parsing the 3D input to extract the
garment shape and change the size of the garment, but in view of
shape parametrization, it only controls one dimension of the gar-
ment shape. TailorNet [8] proposes a garment shape parametriza-
tion and animation framework; however, as mentioned in Sect. 1,
with the “offset on template vertices” expression, it is difficult for
TailorNet [8] to generalize to more types of garment topology,
such as front-opening garments and long dresses. In addition, it
shows limited ability to perform large garment shape changes,
e.g., from long trousers to shorts or from long dresses to skirts.
Additionally, compared to our DeepCloth, it has less capability
for performing 3D garment shape inference and flexible 3D shape
editing. Therefore, it does not meet the demand for establishing
a general framework for garment representation enabling garment
shape and style transition. Meanwhile, our DeepCloth proposes a
general garment shape representation framework, which enables
more general 3D garment reconstruction, animation and editing.

3 OVERVIEW

Our goal is to establish a unified framework for garment represen-
tation, reconstruction, animation and editing, as shown in Fig. 2.
We first introduce the idea behind designing the whole framework.
For a unified garment modeling model, traditional methods often
rely on a fixed garment mesh template, which can hardly be ap-
plied to a general garment style and shape representation. To allow
for a flexible and neural editable garment modeling framework, we
propose our UV-mask garment representation. Together with our

proposed CNN-based ParamNet, a unified and compact garment
style space is established. Furthermore, to perform garment shape
inference, animation and shape editing supporting various styles
of garments, we propose different CNN- and PointNet-based net-
works, which establish mappings between different data domains,
e.g., T-posed and animated garment shapes, or 3D mesh space and
2D garment UV space.

Methodically, we first propose a UV-position map with contin-
uous mask representation, in which the mask denote the topology
and covering areas of the garments, while the rendered texels on
the UV map denotes the geometry details (see Sect. 4). Such
a representation transfers the garment shape style and topology
into a 2D UV-map, which is naturally suitable for the continuous
transition between different garment shapes. Then, we perform
UV map encoding by introducing ParamNet, which maps both
the UV map and its mask information into a feature space by
using a CNN-based encoder-decoder structure (see Sect. 5). By
changing and interpolating the features in the feature space,
garment shape transition and editing can be performed and can be
applied to the following garment shape inference and animation
module (see Sect. 6 and Sect. 7). Specifically, given 3D garment
scans, the garment inference module can reconstruct the garment
shape by transforming the point clouds to our neural garment
representation (Sect. 6). With the garment shapes mapped onto
the garment feature space, garment animation or shape editing can
be applied to the reconstructed garments. (Sect. 7, 8). Note that
our garment animation module is able to learn specific garment
dynamic information according to different garment topologies,
which leads to more plausible 4D garment animation results, even
under drastic garment editing operations.

4 T-POSED GARMENT REPRESENTATION

For T-posed garment representation, a continuous UV-mask gar-
ment representation is proposed to map the 3D garment mesh
onto the continuous 2D UV space, as illustrated below. Such
a representation naturally encodes the 3D garment geometry
distribution on top of human bodies, without relying on a fixed
template, therefore supporting style transition and editing among
different garment topologies.

The first step of our DeepCloth is to represent garments with
different shapes and topologies in a compact space. Therefore,
different garment shape styles of a garment type, i.e., front-
opening/front-closing T-shirts with long/short sleeves, can be
mapped into the same feature space. Note that this section will
only deal with the T-posed garment model for garment shape
encoding and transition, while garments under arbitrary poses will
be handled in Sect. 7.
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In our representation framework, we regard a garment mesh
as a geometric structure covering the human surface and then map
such clothing to a standard human model UV map [40] which
stores the garment topologies and normal distance from the human
body. By mapping the 3D garment geometry onto the 2D SMPL
UV space, we are able to establish the relationship between the
garment vertices and the nearby vertices on the human model, and
better represent the geometric features.

(a) (b)

Fig. 3. The demonstration on coupling the UV-map representation of the
garment. (a) 2D representation for the T-posed garment for Sect. 4. (b)
2D representation for the randomly posed garment for Sect. 7.

Specifically, our goal is to find the correspondences between
the garment vertices and the human model UV coordinates. Here,
we use the same UV map used in [40]. We emit rays from the T-
posed SMPL surface that intersect the garment mesh with garment
vertices, thus establishing a one-to-one mapping from garment
vertices to SMPL surface points. We denote such an SMPL surface
point as the corresponding sub-vertex v⃗Ti of garment vertex g⃗Ti .
In this way, with the predefined UV coordinates of each SMPL
triangle face by [40], we can accordingly find the UV coordinate
ti of the sub-vertex v⃗Ti , which serves as the corresponding UV
coordinate for g⃗Ti . After calculating the length from v⃗Ti to g⃗Ti ,
we set the length value as the rendered texel, which indicates the
normal distance from v⃗Ti . The rendered T-posed UV-map for a
T-shirt is shown in Fig. 3(a).

In this way, as shown in Fig. 3(a), each garment type is
represented into one UV space. For each type of garment (upper
garments, pants, dresses), the mask of its UV-map denotes its
covering area of the human body and thus contains the topology
information of different shape styles. The next step is to perform
UV map encoding, so that garments with different shape styles and
topologies can be then applied to a shape transition framework.

5 LEARNING THE GARMENT SHAPE AND STYLE
SPACE

Based on the UV-mask garment representation, we can transfer
the complicated 3D shape encoding problem into 2D space by
using 2D image auto-encoders. To achieve garment shape and style
transition, the UV-position-based garment representation should
be mapped into a continuous space, so that the garment shapes
and topologies can be smoothly transitioned. By dimensionality
reduction and feature extraction, we map the garment representa-
tion UV-map to a low-dimensional feature vector, where both the
UV-map and its mask information are encoded into a continuous
feature space. Therefore, by editing, interpolating and decoding
from the feature space, we can achieve our goal of continuous
garment shape transition between different garment topologies and
shape styles.

We introduce ParamNet, a CNN-based network for garment
shape and style space learning. The main idea is to leverage a CNN

encoder-decoder structure to encode the given T-posed garment
UV representation generated in Sect. 4. Our UV representation
contains two pieces of information: (1) the mask, i.e., the area
where the UV map has rendered texels illustrates the area where
the garment covers the human body (with T-shirts and pants) or the
height range of the T-posed dresses; (2) the rendered texels of the
UV map illustrate the vertex positions of the garment. Therefore,
when performing the encoding, we also make the decoder generate
two maps, one for the mask, and the other for the vertex offsets.

Fig. 4. The basic structure of our proposed ParamNet, which encodes
our UV-based garment representation into garment latent space.

As shown in Fig. 4, the basic structure of ParamNet contains
two parts, the encoder EP (M

T
g ) = zP ∈ RN encodes the

T-posed garment 2D representation MT
g to a high-dimensional

hidden space, and decoder D1,2
P (zP ) = MapTg ,Maskg decodes

vector zP in a high-dimensional hidden space to the corresponding
map and mask.

(a)

(b)

Fig. 5. The demonstration of garment shape transition under UV-
mask representations: (a) garment shape transition with the proposed
distance-transformed masks, (b) garment shape transition with binary
masks. Note that without the distance-transform operation, there will be
an unnatural transition between different garment shapes.

In practice, we found that the binary masks could barely
perform smooth transitions. This is because the discrete binary
mask does not have natural continuity in transition. Therefore, to
transform the binary masks into a continuous representation, we
propose a distance-transform-based method for pre-processing the
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masks. Specifically, with a given Maskg , we first generate its
“bi-distance transform” map as follows:

T (Maskg) = DT (Maskg)−DT (I −Maskg) (1)

Here I is the map with the value 1, and DT refers to the standard
distance transform operation on the mask. The transformed mask,
as shown in Fig. 4, demonstrates how far a pixel is from the map
boundary, and the continuation of the transformed mask makes it
easy to be parameterized and learned from the decoder. Therefore,
the decoder becomes D1,2

P (zP ) = MapTg , T (Maskg), and the
loss functions are as follows:

L(map)
P = ||MT

g −MapTg ∗Mask(gt)g ||1
L(mask)
P = ||T (Maskg)− T (Mask(gt)g )||1

(2)

After the training phase of ParamNet, the vectors in high-
dimensional hidden space zP = EP (M

T
g ) encrypt the shape

variations and characteristics of the T-posed garment shape. To
extract the features from the high-dimensional hidden space, we
compute the PCA subspace from the hidden space, and sample
shape parameters sP = EP (M

T
g ) ∈ Rn from the PCA subspace.

To recover the T-posed garment shape from shape parameters,
we reversely obtain the vector zP = PCA−1(sP ), perform the
decoder operations to obtain the 2D representation Mg , and finally
generate the garment mesh from it.

The demonstration of our T-posed garment shape transition
is shown in Fig. 5(a) and Fig. 13, which shows that we can
perform a smooth shape transition from short-sleeve T-shirts to
long-sleeve shirts, or from skirts to long dresses by interpolating
the shape parameters in the feature space. Benefiting from our UV-
based representation with mask transformation, we guarantee the
continuity in the transition process. The results also demonstrate
the function of a general and flexible garment shape encoding and
control framework. Although such editing is not strictly semantic
(similar to the SMPL [41] model, which cannot control the shape
of a specific body part), different PCA basis can still enable
garment shape changes on different dimensions of a garment,
as demonstrated in our video demo (1:34-1:54). Fig. 5 shows an
ablation study using the continuous DT operations; please refer
to Sect. 10 for more details.

6 GARMENT SHAPE INFERENCE

(a) (b) (c) (d)

Fig. 6. The demonstration of different garment shape inference methods.
From left to right: (a) input 3D scan, (b) segmented garment, (c) garment
animation result with garment shape inferred by 3DInferNet, (d) garment
animation result with garment shape directly obtained from the scan.

Based on our proposed garment modeling framework and
continuous UV-mask representation, a PointNet-based 3DInferNet
is proposed to map the 3D garment mesh data domain onto the
proposed garment UV space. Note that an alternative method
for garment shape inference given a 3D garment scan is directly
obtaining the corresponding UV/mask-maps from the scan, similar
to our dataset preparation method. However, this method is not
feasible. First, for cases when the garment scan is not complete
(e.g., Fig. 6(a)(b), the waist of the garment was partially occluded
by the hands of the subject), the corresponding UV-maps cannot
be generated properly. Second, the garment scans need to be
deformed to the standard T-pose for animation, which will produce
skinning artifacts especially on the human underarm area. To solve
these problems, we propose our garment shape inference module,
i.e., 3DInferNet, which maps the scanned point clouds to our
garment feature space, and generates garment shapes accordingly.
As shown in Fig. 6, our proposed 3DInferNet is necessary for
generating complete garment shapes.

Fig. 7. The basic structure of our 3DInferNet, which infers the garment
shape parameters from the input 3D scans..

To reconstruct the garment shape from any given 3D raw data,
and further perform static-to-dynamic garment 3D animation and
3D editing, we introduce the garment shape inference module,
which takes a given garment mesh under randomly posed humans
as input and extracts the corresponding garment shape parameters.
Our method encodes garment shapes with different styles and
topologies into a feature space, enabling garment shape extraction
from the encoded space. Benefiting from our UV-mask-based
garment representation module, our shape inference module can
support different garment shapes and styles. In regard to previous
works, SIZER [6] can only perform static garment editing. Tai-
lorNet [8] has the potential for shape extraction by un-posing the
scan to a standard pose and fitting to its fixed garment template,
but it cannot perform large garment shape and topology changes,
nor can it deal with garments that do not fit to its templates.

We introduce 3DInferNet to achieve this task. As shown in
Fig. 7, in our garment inference module, the input of our model is a
pre-segmented garment mesh with an aligned human model. For a
given garment mesh Vg and the corresponding human model mesh
Vh, our goal is to generate the corresponding garment param-
eters sg . The basic structure of 3DInferNet contains two-branch
PointNet-based encoders Eh

I (Vh) = zhI and Eg
I (Vg) = zgI , which

separately encode the input randomly posed human mesh and
garment mesh to hidden space vectors. We implement a fully
connected operator F for extracting features from zhI and zgI
as F(zhI , z

g
I ) = zI . The loss is then introduced to constrain
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the output feature zI to have less deviation with the vector zg
encoding the shape parameters (see Sect. 5):

LI = ||zI − zP ||1 (3)

As the PointNet [42]-based encoder structure does not rely
on the topology or vertex numbers of the input garments, with our
style-flexible garment shape representation method, we can extract
the garment shape parameters from garment meshes with any 3D
inputs. The results are shown in Fig. 1(b) and Fig. 15.

7 GARMENT ANIMATION

Fig. 8. The basic structure of our AnimNet, which generates garment
dynamics under arbitrary human poses and shapes.

As proposed in Sect. 4 and Sect. 5, we represent the garment
shape with the UV-map and encode it into a feature space. In
addition to being applied to the garment shape style transition, the
representation and encoding module can also be used for dynamic
garment animation to animate the clothed human into arbitrary
new poses, which can also be applied to the reconstructed garment
shape from Sect. 6. To better formulate the connection between T-
posed garments and corresponding garments under arbitrary poses,
we fix the correspondence map defined by the T-posed 1-channel
normal distance map, and calculate a 3-channel shift map for
each posed garment. Therefore, the static and dynamic garment
representations are semantically consistent and suitable for further
applications such as garment animation.

Benefiting from our unified UV-mask garment representation,
our animation module generates various garment dynamics with
different shape styles in a single network, which has not been
demonstrated even by the concurrent unified garment represen-
tation framework [9]. The garment animation module in our
DeepCloth takes the input garment shape parameters from Sect. 5
with human pose and shape and generates the animated garment
mesh. To achieve this goal, we introduce AnimNet, which is a
CNN-based network for the garment animation module.

The first step is to represent garments under arbitrary poses. As
shown in Fig. 3, we establish a topology-consistent coupling UV-
map for a T-posed garment and the same garment under arbitrary
poses. As the previous steps determine the UV coordinates of
each garment vertex, for a garment animated on a human with
other poses, we fix the UV coordinates and set the rendered
texels representing the animated shape. Specifically, we calculate
the position shift between garment vertex g⃗Ti and corresponding
SMPL sub-vertex v⃗Ti , and set position shift (dx, dy, dz) as the
rendered texels.

There are three main advantages for our coupling UV-map
representation. First, by fixing the correspondence between gar-
ment vertices and SMPL UV coordinates, a one-to-one mapping

can be applied to the T-posed garment vertices and animated
garment vertices, and randomly posed garments, e.g., floating
front-opening T-shirts or folding skirts, can be represented more
easily. Second, with the same UV coordinate for every garment
vertex, the mapping between T-posed garments and its randomly
posed condition can be learned more easily using a CNN-based
network. Third, since the coupling UV-map has the same mask,
during animation, we only need to infer the rendered texels of the
second map.

We denote MT
g for the T-posed standard garment UV map,

and MA
g for the animated garment UV map. In AnimNet, we take

MT
g as input and generate MA

g as output. Meanwhile, to encode
the human pose and shape information, we find that the normal
information actually guides the position map of the garment;
therefore, we use the normal map Nβ,θ of the human model to
represent the human shape β and pose θ information. As shown
in Fig. 8, we use a CNN-based encoder EA and decoder DA with
skip connections to generate the inferred garment map MapAg .
The main loss function is as follows:

MA
g = MapAg ∗Mask(gt)g

L(map)
A = ||MA(gt)

g −MA
g ||1

(4)

Here Mask
(gt)
g is the ground truth mask, and we only need to

constraint the generated position map to have the same value as
the ground truth map inside the masked area, as the input garment
shape parameters contain the mask information.

Fig. 9. The demonstration of different styles garment animation. From
left to right: front-opening T-shirt animation, front-closing T-shirt anima-
tion, and skinning results with front-opening T-shirt. The results clarify
that AnimNet learns garment dynamics from the encoded garment
styles.

Note that our UV-mask-based garment representation implic-
itly encodes the garment shape dynamic information, which helps
AnimNet to learn the deformation of different garment styles
when performing garment animation(e.g. front-opening/closing
garments). As shown in Fig. 9, the network learns garment
dynamic shapes with different garment styles, such as the floating
bottom part of the front-opening T-shirt. The UV-masks not only
mask the garment geometry, but also encode garment styles, which
is reflected in animation results. The example garment animation
results are shown in Fig. 13 and Fig. 14, which show that we can
animate different types of garments with various human shapes,
poses and garment styles.

8 GARMENT SHAPE-STYLE EDITING

As mentioned in Sect 5, we determine the PCA subspace from
the garment representation latent space, which serves as a more
compact and semantic encoding of garment style variation than
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the original latent space. Therefore, we can perform garment shape
and style transition and editing by shifting the PCA space vectors.

Take the garment reconstruction procedure as an example.
Given garment 3D scans and human models, with the gar-
ment shape parameters solved by 3DInferNet, we can perform
shape editing by the following steps: (1) mapping the shape
parameters to the same PCA subspace calculated in Sect. 5 as
sI = PCAg(zI), (2) editing some dimensions of shape parame-
ters sI as s′I , (3) obtaining the vector z′I = PCA−1(s′I), and (4)
recovering a new garment shape from z′I .

After the garment editing step, the new garment can then be fed
to our AnimNet for garment animation, so that dynamic garment
shape editing can be applied to the given pose sequences. The
results are shown in Fig. 1(c)(d)(e) and Fig. 15(b).

Fig. 10. The ablation study of garment editing in PCA space and the orig-
inal latent space. Top: editing parameters in PCA space; bottom: editing
parameters in original latent space. Different garment shape styles can
be edited easily by shifting the PCA vectors. In contrast, directly editing
the original latent space vectors can hardly yield meaningful garment
shape editing results.

To show the necessity of PCA for garment editing, we perform
an ablation study for editing the garment parameters in two ways:
(1) editing one dimension each time in PCA space, and (2) editing
one dimension each time in the original latent space vector, with
the relative parameter shift degree. As shown in Fig. 10, we
can perform convenient and semantic garment editing by shifting
different dimensions in PCA space, while such editing can hardly
be performed by editing in the original latent space. This is
because the PCA operation encodes the original garment shape
space in a more compact form and extracts the semantic style
patterns.

9 GARMENTS NOT HOMOTOPY TO HUMAN BODY

(a) (b)

Fig. 11. The demonstration on coupling the UV-map representation of
the garment that is not homotopy to the human body. (a) 2D representa-
tion for the T-posed skirt. (b) 2D representation for the randomly posed
skirt for Sect. 7.

Garments that are not homotopy to the human body, e.g.,
skirts and dresses, are not suitable for our SMPL-UV-based
representation. Therefore, we separately design the UV-mask
representation for those garments. We map them to an independent

UV coordinate to better reflect the characteristics of the garment
geometry. The boundary of the UV map demonstrates the edges
and basic shape information (such as the height of dresses), and the
rendered texels indicate the 3D positions of the garment vertices.

Specifically, when dealing with clothing that is not homotopy
to the human surface (e.g., dresses), we set an independent UV
coordinate accordingly. For T-posed dresses and skirts, as their
geometry circles around the lower body, we leverage cylindrical
coordinates and calculate the UV coordinates as follows: for
each garment vertex g⃗′Ti , we transfer it into cylindrical coordi-
nates: g⃗′Ti (x, y, z) → g⃗′Ti (r, y, θ) where r =

√
x2 + z2 and

θ = arctan(z, x). The UV coordinate t′i for g⃗′Ti (r, y, θ) is
t′i = ((y0 − y) cos(θ) + 0.5, (y0 − y) sin(θ) + 0.5), and the
rendered texel is just (x, y, z) to indicate the vertex positions.
Here, y0 serves as the height threshold of the skirts; in practice,
we set y0 = 0.2 above the root joint of the human model. The
rendered T-posed UV-map for a skirt is shown in Fig. 11(a).
Additionally, continuous style transitions can be performed similar
to Sect. 5, and the results are shown in Fig. 12.

Fig. 12. The demonstration of the skirt shape transition under UV-mask
representations

For garments under arbitrary poses, similar to our procedure
in Sect. 7, we fix the garment vertex UV coordinates, and directly
use the vertex positions to set the rendered texels, as used in the
T-posed scenario. The rendered arbitrarily posed UV-map for a
skirt is shown in Fig. 11(b).

Apart from the different UV-coordinate layouts of different
types of garments, the main pipeline (ParamNet, AnimNet and
3DInferNet) works the same as garments homotopy to human
bodies. As shown in Fig. 13, Fig. 14 and our video demo, we can
perform skirt style editing with robust and vivid animation results,
which shows the robustness of our UV-mask-based representation
pipeline for dealing with different types of garments.

10 EXPERIMENTS

In our experiments, we use CLOTH3D [11], which is a large-scale
synthetic dataset with various garment shape styles suitable for
our pipeline for our training and testing data. We test our garment
encoding module with four garment kinds: upper garments, pants,
skirts, and jumpsuits. The animation module is tested with all these
kinds of garments. In addition, we take the BUFF Dataset [43] and
Twindom Dataset (https://web.twindom.com/) as input to test our
garment inference module for 3D garment animation and editing
from input 3D data.

The network structures for our CNN-based encoders, e.g., EP

in ParamNet (Sect. 5) and EA in AnimNet (Sect. 6), are based
on the ResNet-18 [44] structure. The decoders accordingly are six
stacked up-sampling layers with convolution layers. The structure
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Fig. 13. The demonstration of our shape variation for different kinds of garments. Each block shows the garment shape parameter variation on one
type of garments.

Fig. 14. The demonstration of garment animation results. Left: the same garments under different human shapes. Middle: different garment styles
on the same person. Right: the same garments under different human poses.

for our PointNet-based [42] encoders Eg
I and Eh

I (Sect. 7) is based
on PointNet structures for extracting features from point clouds.

In addition to the data preparation, with the NVIDIA GeForce
GTX TITAN X GPU, the training procedure for ParamNet takes
approximately 50 hours, while AnimNet and 3DInferNet take 100
hours separately for each kind of garment. The garment rendering
results generated from the network output, together with a standard
collision resolving procedure, take approximately 2 seconds per
human per frame with one garment.

Garment shape representation and animation. To evaluate
our garment shape representation results, Fig. 13 demonstrates
the garment shape variations controlled by different parameters,
with the PCA parameter sP varying within the range of 1.0
σ. The results in Fig. 13 show that we can perform plausible
garment shape variation from long-sleeve shirts to short-sleeve T-
shirts, from front-closing T-shirts to front-opening T-shirts, from
long pants to shorts, and from long dresses to short skirts, which
clarifies that our method provides a more general garment shape
representation model than TailorNet [8]. Additionally, as demon-
strated in Fig. 14, given different garment styles and different body
shapes, we can generate clothed human animation results, which
makes our framework capable of representing garment shapes

under various human shapes, poses and garment styles.
To demonstrate the necessity of the DT operation, we evaluate

garment shape transition with and without the “bi-distance trans-
form” operation. To directly use binary masks, we use a network
structure for garment shape representation similar to ParamNet. As
shown in Fig. 5, the lack of a continuous boundary constraint leads
to an unnatural shape transition. In contrast, with our “bi-distance
transform”, the masks are transformed smoothly, thus generating
continuous garment shape transition results.

It should be clarified that although the DT operations change
the binary masks into a continuous form, other continuous DT
transforms, such as the truncated distance transform or cosine
encoding based on the distance transform images, can also be
used. As shown in Fig. 16, we show that the continuous transforms
based on our bi-distance transform can also be applied for a
smooth transition.

Here, we provide a qualitative comparison with TailorNet [8].
Benefiting from our UV-position with mask representation, we
can represent different garment shape styles and topologies in the
same framework, while TailorNet [8] needs separate templates
for each kind of garment. As shown in Fig. 17, TailorNet [8]
needs two separate templates for representing T-shirts and shirts;
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(a) (b)

Fig. 15. The experimental results of our garment inference module. (a) Garment inference with a given input, from left to right: original 3D scan,
aligned human model, 3D segmented T-shirts with pants, and animation results. (b) Top: garment retargeting results, bottom: garment 3D editing
results.

Fig. 16. The ablation study on smooth garment transition using different
continuous mask transforms based on the proposed bi-distance trans-
form. From top to bottom: garment shape transition using the proposed
method, the truncated bi-distance transform and the cosine encoding on
the bi-distance transform.

thus, it cannot represent tops, front-opening shirts or half-long-
sleeve shirts. Meanwhile, our model can represent all these up-
per garment shapes in the same model and can perform shape
parametrization and reasonable transitions between these shapes,
as shown in Fig. 14 and our video demo. In addition, TailorNet [8]
cannot perform shape control for pants to shorts or deal with long
dresses, while our method can address such cases.

Garment shape inference and editing. To evaluate our
garment shape inference and editing module, we use the 3D scan
of the Twindom dataset to perform garment shape inference and
editing. The Twindom dataset is a high-resolution 3D scan dataset
with multiple clothed humans under arbitrary poses.

To fit in our module, for the 3D scan clothed model, we first
perform a pose alignment procedure with the standard human
model to obtain the pose information and the inside posed human
mesh Vh, and segment the 3D scan to each garment mesh Vg . We
then perform 3DInferNet introduced in Sect. 6 to extract the shape
parameters sI for the garment, and generate posed sequences
using AnimNet using garment 2D representation generated by sI .

Fig. 17. Comparison between our method and TailorNet [8] on gar-
ment representation. Top: our animated garment shapes with different
garment styles. Bottom: results generated by TailorNet [8]. Note that
TailorNet [8] needs two templates to perform such garment shapes, and
cannot represent some of the shapes. Our method can represent all the
shapes in the same framework.

The results are shown in Fig. 1, which shows that we can correctly
recover the shape of the original garments. In addition, we can
perform shape editing by shifting the shape parameters sI as s′I
and perform the animation procedure. The results are shown in
Fig. 1 and Fig. 15.

Using SMPL-UV in dress shape representation and ani-
mation. In our pipeline, we currently use a different UV layout
for dress representation and animation. Actually, it is also feasible
to represent dresses with SMPL-UV, but there will be artifacts
especially on the between-leg regions, when performing dress
animation and transition. Here, we perform ablation studies on
using SMPL-UV in dress shape representation and animation.

To represent a T-posed garment that is not homotopy to the
human body, the main concern is to determine the correspon-
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Fig. 18. The demonstration of dress representation and animation using
SMPL-UV. From left to right: masked dress representation UV map and
three animated poses of the corresponding dress.

dence between the garment and the body model. We solve the
SMPL-based surface deformation with the SMPL-garment corre-
spondence by minimizing the Chamfer distance energy function
between the corresponding human leg areas on a naked human
model and the dress mesh. The UV-position map with continuous
DT -based masks is then generated accordingly, similar to Sect. 4.
However, as the dress geometry is not homotopy to the human
body, it is difficult to describe as a normal distance map, so we
adjust it as a 3-channel shift map, as shown in the left column
of Fig. 18. Then, we generate the animated dress geometry UV
map similar to Sect. 7 and train our ParamNet and AnimNet
accordingly.

As the dresses are not homotopy to the human body, it is
difficult to design a mesh layout for completed mesh rendering,
so we render the results in a point-based manner. The results are
shown in Fig. 18 and our video demo, which show that although
dress animation under various styled can also be performed using
SMPL-UV, there are still artifacts on the between-leg regions
and the boundaries. Meanwhile, the non-homotopy dress design
will avoid such problems, which is attributed to a more topology-
consistent design for the corresponding garment type.

We also perform a quantitative comparison of animation accu-
racy between the proposed dress-UV and SMPL-UV, as shown in
Table 1. As the SMPL-UV representation better reflects the geo-
metric connection between the SMPL bodies and the dresses, the
SMPL-UV performs slightly better quantitatively than the dress-
UV. However, the problems addressed above are still difficult
to solve. A more general and subtle design may be needed in
the future works for representing different garments in the same

SMPL-UV.

Fig. 19. Data samples of the THuman3.0 dataset.

Fig. 20. The demonstration of our DeepCloth models tested on THu-
man3.0 dataset. From top to bottom: animation results of two kinds
of garments (long coat / short T-shirt), and garment shape transition
between the two garments. Note that our model can perform vivid
animation results given different garment styles.

Experiments on real-world data. To illustrate the ability
of our model for flexibly representing and animating real-world
garments, we also evaluate our model on the real-captured THu-
man3.0 dataset, which contains 154 human-garment combinations,
where each person under 2-3 sets of garments performs 30 to
60 poses. The data samples are shown in Fig. 19. In particular,
we evaluate upper garment animation and transition with the
given real-captured data. As shown in Fig. 20 and our video
demo, by performing fine-tuning with the pre-trained AnimNet
and ParamNet on such a dataset, our model can reflect the dynamic
3D patterns of different garments, and perform vivid animation
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styles given different upper garments. Additionally, our model
can perform smooth and natural style transitions between different
garments. The experiments show the ability of our model to deal
with real-world garment data.

Fig. 21. The demonstration of RGB garment reconstruction. From left
to right: input real-world RGB image, predicted UV map and DT -mask,
reconstructed garment shape, and three animation results.

Meanwhile, we also experiment on garment reconstruction
from an input RGB image. The network structure is a standard
CNN-based encoder-decoder structure, similar to ParamNet in
Fig. 4, while the input is replaced by an RGB image. The
experiments are also performed on the THuman3.0 dataset. After
training, our model can predict the basic garment shapes from an
input RGB image in the test set, and the reconstructed garment
can be applied to realistic garment animation given garment shape
styles, as shown in Fig. 21.

Quantitative evaluation. For the garment animation module,
we compare our UV-based garment animation method with the
PointNet-base [42] method, which extracts the point features of
the garment mesh and the posed human mesh, to infer the shift of
garment vertices. As the CLOTH3D [11] dataset contains various
garment styles, e.g., front-opening and front-closing T-shirts with
long or short sleeves, the garment styles cannot be fit into a fix
garment template. Therefore, traditional MLP or other methods
suitable for dealing with meshes with a fixed number of vertices
could not be evaluated. The CLOTH3D [11] is split into 95 percent
for training and 5 percent for testing. The results applied on the
test set are as follows; here, the loss is the mean vertex-to-mesh
error.

garment type Ours PointNet-based method
T-shirts & shirts 16.34 20.45
pants & shorts 13.51 18.63

long dresses & skirts 31.32 40.98
long dresses & skirts (SMPL-UV) 27.90 /

TABLE 1
Mean vertex-to-vertex error (mm) of our AnimNet method and

PointNet-based method for different garment types, with quantitative
evaluations on SMPL-UV dresses.

As shown in Table 1, our method outperforms the PointNet-
based method. This is because the garment styles and topologies
vary over a wide range in the CLOTH3D [11] dataset, while
traditional PointNet-based [42] methods have some limits, espe-
cially in long dress cases. Note that as our goal is to establish a
general garment representation enabling garment shape and style
transition, the PointNet-based method actually does not meet our
requirement, while our UV-based representation can handle these
problems, as demonstrated in Fig. 13.

(a) (b)

Fig. 22. The demonstration of garment animation evaluated on the Tai-
lorNet [8] dataset: (a) our results, (b) results generated by TailorNet [8].

We also evaluate our garment animation module using the
TailorNet [8] dataset. The dataset we use, i.e., CLOTH3D, does
not contain many garment wrinkle details, although it contains
numerous human pose sequences with different human shapes,
each sequence corresponding to an independent garment mesh,
providing multiple garment styles and topologies on both T-
pose and animated poses suitable for our framework. In contrast,
the TailorNet [8] dataset contains garments with more garment
wrinkle details, but due to its fixed garment templates for each
type of garment, it cannot be used for training garment repre-
sentation enabling garment topology and style transition. Thus,
we only evaluate our garment animation module here. We train
our AnimNet on the TailorNet [8] dataset and compare our
performance with TailorNet [8]. As shown in Fig. 22, with our
framework trained on the TailorNet [8] dataset, we can also gen-
erate vivid garment details when performing garment animation.
Additionally, we make a quantitative evaluation on the TailorNet
dataset, as shown in Table 2, which shows that by training on
a particular garment style, our model can achieve comparable
animation qualities with TailorNet. The reason that our model
does not achieve better results is that, we focus more on a flexible
and general garment representation, while TailorNet focuses more
on animation quality and accuracy given fixed garment vertex
templates.

garment type Ours TailorNet method
male T-shirts 11.58 11.2
male pants 10.39 8.1

female T-shirts 12.97 12.3
female pants 6.10 4.8

TABLE 2
Mean vertex-to-vertex error (mm) of our AnimNet method and

TailorNet [8] method on the TailorNet dataset for different garment
types.

For garment shape inference and application, we compare our
method with the state-of-the-art garment reconstruction method
MulayCap [34], which takes a single-view RGB video as input
and dynamically generates a two-layer human with garment mesh.
We use a 4D sequence in the BUFF [43] dataset as the input,
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Fig. 23. Quantitative comparison with MulayCap [34] using the rendered
4D model and aligned SMPL poses and shape in the BUFF [43] Dataset
as input. The result shows a quantitative comparison between the two
methods in one 4D sequence using the per-vertex average error.

as demonstrated in Fig. 1. We provide [34] with the aligned
SMPL shape and poses for every frame, and compare the vertex-
to-mesh error between the generated garments and the ground
truth input. For our method, we use only the ground truth garment
mesh of the first frame for garment shape inference, similar
to Fig. 1, and provide garment animation with SMPL poses
and shape. As demonstrated in Fig. 23, our method performs
similarly to MulayCap [34]. From a methodological perspective,
MulayCap [34] is a 4D garment reconstruction pipeline that uses
RGB and human parsing information in every frame, for per-frame
garment geometry optimization and shape-from-shading geometry
detail generation. Our method is an animation module, which only
takes the garment mesh of the first frame and the SMPL motion
sequence as input, without using the input RGB information,
which is why our model can hardly outperform MulayCap [34].
However, the comparable results still demonstrate the animation
ability of our model.

11 CONCLUSION

In this paper, we propose DeepCloth, a unified neural garment
representation framework that can perform garment shape and
style transitions by learning the shape space of 3D garments.
Our method enables modeling garments under different topologies
using the “UV-position map with mask” representation, and can
perform smooth and free garment transitions by mapping such
representations into a continuous feature space. By introducing
AnimNet and 3DInferNet, our representation allows the generation
of 4D clothed human dynamic sequences or the recovery of
garment shapes from 3D scans and performing animation and gar-
ment shape editing. We believe that the proposed topology-aware
UV-Mask-based representation takes an important step forward in
the field of 3D clothing, especially with the introduction of neural
masks for controlling the topology and shape of garments.

Limitations and discussions. Similar to TailorNet [8], we
also rely on an explicit collision resolving step. Additionally, at
the moment, we cannot handle garments with pockets and collars,
which may be resolved by introducing another detailed UV layer.
We did not experiment on long dresses that cover the upper body,
which can be represented in the future by combining SMPL-
UV and dress-UV. Besides above, future works will focus on
generating more garment styles based on our work.
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