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Abstract

This paper contributes a novel realtime multi-person mo-
tion capture algorithm using multiview video inputs. Due
to the heavy occlusions and closely interacting motions in
each view, joint optimization on the multiview images and
multiple temporal frames is indispensable, which brings up
the essential challenge of realtime efficiency. To this end,
for the first time, we unify per-view parsing, cross-view
matching, and temporal tracking into a single optimiza-
tion framework, i.e., a 4D association graph that each di-
mension (image space, viewpoint and time) can be treated
equally and simultaneously. To solve the 4D association
graph efficiently, we further contribute the idea of 4D limb
bundle parsing based on heuristic searching, followed with
limb bundle assembling by proposing a bundle Kruskal’s
algorithm. Our method enables a realtime motion capture
system running at 30fps using 5 cameras on a 5-person
scene. Benefiting from the unified parsing, matching and
tracking constraints, our method is robust to noisy detec-
tion due to severe occlusions and close interacting mo-
tions, and achieves high-quality online pose reconstruction
quality. The proposed method outperforms state-of-the-art
methods quantitatively without using high-level appearance
information.

1. Introduction

Markerless motion capture of multi-person in a scene
is important for many industry applications but still chal-
lenging and far from being solved. Although the litera-
tures have reported single view 2D and 3D pose estima-
tion methods [41, 36, 11, 12, 18, 17, 28, 34, 44, 45, 33],
they suffer from heavy occlusions and produce low-fidelity
results. Comparably, multi-view cameras provide more
than one views to alleviate occlusion, as well as stereo
cues for accurate 3D triangulation, therefore are indispens-
able inputs for markerless motion capture of multi-person
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Figure 1. Our method enables multi-person motion capture sys-
tem working at 30fps for 5 persons using 5 RGB cameras, while
achieving high quality skeleton reconstruction results.

scenes. While remarkable advances have been made in
many kinds of multi-camera motion capture systems for hu-
man [30, 31, 24] or even animals [4], most of them fail to
achieve the goals of realtime performance and high quality
capture under extremely close interactions.

Given the 4D (2D spatial, 1D viewpoint and 1D tempo-
ral) multiview video input, the key to the success of real-
time and high quality multi-person motion capture is how
to leverage the rich data input, i.e., how to operate on the
4D data structure to achieve high accuracy while maintain-
ing realtime performance. Essentially, based on the human
body part features pre-detected in the separate 2D views us-
ing state-of-the-art CNN methods [11], three kinds of ba-
sic associations can be defined on this 4D structure. These
include single image association (i.e., parsing) [11, 20] to
form human skeletons in a single image, cross-view associ-
ation (i.e., matching) to establish correspondences among
different views, and temporal association (i.e. tracking) to
build correspondences between sequential frames.

Existing methods struggle to deal with all these associ-
ation simultaneously and efficiently. They consider only
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parts of these associations, or simply operate them in a
sequential manner, resulting in failure to be a high qual-
ity and realtime method. For example, the state-of-the-
art methods [14, 10, 39] share a similar high-level frame-
work by first performing per-view person parsing, followed
by cross-view person matching, and temporal tracking se-
quentially. They usually assume and rely on perfect per-
view person parsing results in the first stage. However,
this can not be guaranteed in crowded or close interac-
tion scenarios. Temporal extension [8, 7] of the 3D pic-
torial structure (3DPS) model [6] apply temporal tracking
[23], followed with cross-view parsing using the very time-
consuming 3DPS structure optimization. The Panoptic Stu-
dio [24] addresses these associations in a sequential manner,
by first matching (generate node proposals), then tracking
(generate trajectories), and finally assemble the 3D human
instances. As it tracks over the whole sequence, it is impos-
sible to achieve realtime performance.

In this paper, we formulate parsing, matching, and track-
ing in a unified graph optimization framework, called 4D
association graph, to simultaneously and equally address-
ing 2D spatial, 1D viewpoint and 1D temporal information.
By regarding the detected 2D skeleton joint candidates in
the current frame and the 3D skeleton joints in the former
frame as graph nodes, we construct edges by calculating
confidence weights between nodes. Such calculation jointly
takes advantage of feature confidences in each individual
image, epipolar constraints and reconstructed skeletons in
the temporal precedent frame. Compared with [14, 24, 8, 7]
which adopt sequential processing strategy on image space,
viewpoint, and time dimensions, our 4D graph formula-
tion enables unified optimization on all these dimensions,
thereby allowing better mutual benefit among them.

To realize realtime optimization on the 4D association
graph, we further contribute an efficient method to solve
the 4D association by separating the problem into a 4D limb
parsing step and a skeleton assembling step. In the former
step, we propose a heuristic searching algorithm to form 4D
limb bundles and a modified minimum spanning tree algo-
rithm to assemble the 4D limb bundles into skeletons. Both
of these two steps are optimized based on an energy func-
tion designed to jointly consider the image feature, stereo
and temporal cues, thus optimization quality is guaranteed
while realtime efficiency is achieved. We demonstrate a re-
altime multi-person motion capture system using only 5 to
6 multiview video cameras, see Fig. 1 and the supplemental
video. Benefiting from this unified strategy, our system suc-
ceeds even in the close interaction scenarios (Video 02:55-
03:30). Finally, we contribute a multiview multi-person
close interacting motion dataset synchronized with marker-
based motion capture system.

2. Related Work
We briefly overview literature on multi-person skeleton

estimation according to the dimension of input data.

2.1. Single Image Parsing

We restrict our single image parsing to the work that
addresses multi-person pose estimation in 2D and 3D. As
there are close interactions in the scene, they all need to
consider skeleton joint or body part detection and their
connection to form skeletons. Parsing methods can be
typically categorized into two classes: bottom-up method
and top-down method. In general, top-down methods
[26, 17, 12, 18, 43, 28] demonstrate higher average pre-
cision benefiting from human instance information, and
bottom-up methods [20, 11, 35, 27, 38] tend to propose
pixel-aligned low-level feature positions while assembling
them is still a great challenge. Typically, a state-of-the-art
bottom-up method, OpenPose [11], introduces part affinity
field (PAF) to assist parsing low-level keypoints on limbs,
obtaining realtime performance with high accuracy.

2.2. Cross-view Matching

Matching finds correspondences across views, no mat-
ter on high level features (human instances) or low-level
features (keypoints). Previous work [6, 8, 7, 16] implic-
itly solves matching and parsing using 3D pictorial struc-
ture model. However, such method is time-consuming due
to large state space and iterative belief propagation. Joo
et al. [24] utilize detected features from dense multi-view
images to vote for possible 3D joint positions, which does
matching in another implicit way. Such voting method
only works well with enough observation views. Most re-
cent work [14] matches per-view parsed human instances
cross view with convex optimization method constrained by
cycle-consistency. Though fast and robust, such method re-
lies on appearance information to ensure good results, and
could be affected by possible parsing error (e.g. false posi-
tive human instance and wrong joint estimation).

2.3. Temporal Tracking

Tracking is one key step towards continuous and smooth
motion capture, and helps solve current pose ambiguity ac-
cording to history results. Tracking could be done either
in 2D space or 3D space. Many works have addressed 2D
tracking, known as pose-tracking tasks [3, 37, 22, 19]. For
3D tracking, motion capture of multiple closely interact-
ing persons [31, 30] has been proposed through joint 3D
template tracking and multi-view body segmentation. Li et
al. [29] propose a spatio-temporal tracking for closely in-
teracting persons from multi-view videos. However, these
pure tracking algorithms are easy to fail because of tempo-
ral error accumulation. Elhayek et al. [15] track 3D artic-
ulated model to 2D human appearance descriptor (Sum of
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Gaussian), achieving markerless motion capture for both in-
door and outdoor scenes. However, it does not demonstrate
multi-person case (more than 3 persons). Belagiannis et
al. [8] also utilize tracking information, but they derive hu-
man tracks in advance as prior to reduce state space, instead
of solving tracking and matching simultaneously. Bridge-
man et al. [10] contribute a real time method, yet it adopt a
sequential processing of image parsing, cross-view correc-
tion and temporal tracking. In Panoptic Studio [24], after
temporal tracking of 3D joint proposals on the whole se-
quence, optimization is started for human assembling.

3. Overview

Our 4D association graph considers the information in
two consecutive frames. We first use the off-the-shelf
bottom-up human pose detector [11] on each input view
of the current frame to generate low-level human features
on each view. Our 4D association graph takes as input
multi-view human body part candidates (2D heatmaps po-
sition) and connection confidence (PAF [11] score ranging
between 0 and 1) between body parts (see Fig. 2(a)), to-
gether with the former reconstructed 3D skeletons. By re-
garding body parts and the 3D joints in the former frame as
graph nodes, we construct edges with significant semantic
meaning between nodes. Specifically, as shown in Fig. 2(b),
there exist three kinds of edges: per-view parsing edges
connecting adjacent body parts in each image view, cross-
view matching edges connecting the same body part across
views, and temporal tracking edges connecting history 3D
nodes and 2D candidates. The construction of these edges
will be elaborated in Sect. 4.

Based on the input graph in Fig. 2(b), this 4D associa-
tion problem can be described as a minimum-cost multi-cut
problem, i.e., a 0-1 integer programming problem to select
those edges that belong to the real skeletons and the phys-
ically real temporal and cross-view edges, see Fig. 2(c).
Actually, our graph model is similar to the available sin-
gle view association problem [11, 20], except that it is more
complex. As it is a NP-hard problem, we split it to 4D limb
parsing (Sect. 5.1) and a skeleton assembling (Sect. 5.2)
problems. Our proposed solving method can guarantee re-
altime performance while obtaining robust results. Here, it
is worth mentioning that, our graph model and the solving
method also work for special cases when there is no tempo-
ral edges, i.e., at the first frame of the whole sequence, or
when new persons entering the scene.

4. 4D Association Graph

For each image view c ∈ {1, 2, ..., N} at the current
frame t, the convolutional pose machine (CPM) model
[41, 11] is first applied to get the heatmaps of keypoints
and their part affinity fields (PAFs). Denote Dj(c) =

{dm
j (c) ∈ R2} as the candidate positions of the skeleton

joints j ∈ {1, 2, ..., J}, with m as candidate index. Here, t
is ignored by default as processing the current frame. De-
note fmn

ij (c) as PAF score connecting dm
i (c) and dn

j (c),
where {ij} ∈ T is a limb on the skeleton topology tree T .

With both the candidate positionsDj(c) and the skeleton
joints reconstructed in former frame seen as graph nodes,
we have three kinds of edges: per-view parsing edges EP
connecting nodes in the same view, cross-view matching
edges EV connecting nodes in different views geometri-
cally, and temporal tracking edges ET connecting nodes
temporally. The solving of this association graph is equiva-
lent to determining bool variable z ∈ {0, 1} for each edge,
where z = 1 means connected nodes are associated in the
same human body, z = 0 otherwise. Note that z = 0 means
the two nodes are linked with two different bodies, or are
linked with a false position (a fake joint that is not on a
real body). The connecting weight on edges is written as
p(z) = p(z = 1). In the following, the weights of each
edge is defined in the 4D association graph.

4.1. Parsing Edges and Matching Edges

Without considering the temporal tracking edges intro-
duced by the former reconstructed 3D skeletons, the parsing
edges and the matching edges forms a 3D association graph
G3D. This case happens when processing the first frame
of the whole sequence or when a new person is entering
in the scene. The graph G3D directly extends the original
per-view multiple person parsing problem [11] with cross
view geometric matching constraints. With these geometric
constraints, false limb connections in single view case may
have good chance to be distinguished and corrected during
joint 3D association.

Denote zmn
ij (c1, c2) as bool variable on edge connect-

ing dm
i (c1) and dn

j (c2). Obviously, a feasible solution
{zmn

ij (c1, c2)} on G3D must conforms to the following in-
equalities

∀m,
∑
n

zmn
ij (c, c) ≤ 1

∀c2 6= c1,m,
∑
n

zmn
ii (c1, c2) ≤ 1

(1)

Specifically, the top one forces that no two edges share a
node, i.e., no two limbs of the same type (e.g., left forearm)
share a part. The bottom one forces that no joint from one
view connects to two joints of the same type from another
view. Note also here c1 and c2 represent all possible com-
binations of view pairs.

For the per-view parsing edge EP , we directly define the
input edge weight as its PAF score:

p(zmn
ij (c) = 1) = fmn

ij (c) (2)
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Figure 2. Method overview. (a) We input body part positions and connection confidence of different views at time t, together with 3D
person of last time. We use 3 views for example. (b) The 4D association graph. For clarity, we only highlight the association of the torso
limb with three types of edges (parsing edges, matching edges and tracking edges) with different colors. (c) From the initial graph (b),
our association method outputs the assembling results. (d) We optimize the assembled multiview 2D skeletons (c) to form 3D skeletons of
current frame t.

For cross-view matching edge EV , the weight is defined
based on the epipolar distance, written as line-to-line dis-
tance in 3D space:

p(zmn
ii (c1, c2)) = 1− 1

Z
dm
i (c1)⊕ dn

i (c2) (3)

d(c1)⊕ d(c2) = d(K−1c1 d̃(c1),K−1c2 d̃(c2)) (4)

where d̃ = [dT, 1]T, Kc is intrinsic matrix of view c, d(·, ·)
means line-to-line distance between two rays emitting from
the camera centers of view c1 and c2. Z is an empiri-
cally defined normalization factor, which adjusts epipolar
distance to range [0, 1]. Note that we only build edges for
those cross-view nodes sharing the same joint index.

4.2. Tracking Edges

Although solving G3D at each time instant could pro-
vide good association in most cases, failures may happen
for very crowded scene or severe occlusions. To improve
skeleton reconstruction robustness, we take advantage of
the temporal prior, i.e., the reconstructed skeletons at the
former frame for regularization of the association problem,
which forms the 4D association graph G4D. We restrict
the connecting edge between the former frame skeletons
and the current frame joint features, by requiring the two
nodes of the edge to be the same skeleton joint (can be on
different persons). Denote zmk

i (c) as the final optimized
bool variable for edge connecting image joint feature dm

i (c)
and skeleton joint Xk

i . We define tracking edge connecting
probability as

p(zmk
i (c)) = 1− 1

T
d′(Xk

i ,K
−1
c dm

i (c)) (5)

where d′(X,d) indicates point-to-line distance between 3D
point X and 3D line emitting from camera center to d, and
T is normalization factor, ensuring p(zmk

i (c)) to be in range

[0, 1]. Similarly, we have inequality conditions hold for the
feasible solution space:

∀i, c,
∑
m

zmk
i (c) ≤ 1,

∑
k

zmk
i (c) ≤ 1 (6)

This constraint forces that each 3D joint at the last frame
matches no more than one 2D joint on each view at the cur-
rent frame, and vice versa.

4.3. Objective Function

Based on the predefined probabilities for the parsing
edges, matching edges and tracking edges, our 4D associ-
ation optimization can be formulated as an edge selection
problem to maximize an objective function under condi-
tions 1 and 6. Specifically, let q(z) = p(z) · z denote the
final energy of an edge, where z is a boolean variable, and
then our objective function can be written as the summation
of energies of all the selected edges in EP , EM and ET :

E(Z) =wp

∑
q(zmn

ij (c, c)) + wm

∑
q(zmn

ii (c1, c2))

+ wt

∑
q(zmk

i (c))

(7)

Note here
∑

would traverse all the possible edges, i.e., all
feasible values of variables (i,j,m,n,k,c,c1,c2) by default.
wp, wm and wt are empirically defined weighting factors
for edges EP , EM and ET , respectively. With wt = 0, it
degenerates to the objective function for solving association
graph G3D. Notice that, both G3D and G4D can be solved
with the same procedure, as described in Sect. 5.

5. Solving 4D Association
Solving the 4D Association graph means maximizing

the objective function Eqn. 7 under constraints Eqn. 1 and
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Figure 3. Illustration of limb cliques. (a) A sample 4D graph on
limb {ij} denoted as Gij

4D . Two cliques are marked as red area and
blue area. (b) Limb cliques of different sizes could be proposed
from the 4D graph on limb. Joints of the same type (same color
in the above figure) on a limb clique form a clique, and joints of
different types on each view must share a green parsing edge.

Eqn. 6. Traversing the huge association space in a brute
force manner is infeasible for realtime systems. Instead, in-
spired by the realtime but high quality parsing method [11]
that assembles 2D human skeleton in a greedy manner, we
propose a realtime 4D association solver. The key differ-
ence between our 4D association and the previous 2D as-
sociation is that: the limb candidates scatter not only in a
single image but in the whole space and time, and some
limbs represent the same physical limbs. Therefore, we
need to first associate those limbs that are likely to be the
same limb bundle across views and times, before 4D skele-
tons assembling. Based on this idea, our realtime solution
can be divided into two steps: 4D limb bundle association
(Sect. 5.1), and 4D human skeleton association by the bun-
dle Kruskal’s algorithm (Sect. 5.2). It is worth noting that,
both of these two steps rely on the objective function Eqn. 7
for optimization.

5.1. 4D Limb Bundle Parsing

To extract limb bundles across view and time, we first
restrict G4D on a limb {ij} (two adjacent types of joint)
as Gij4D. Since there are multiple persons in the scene, graph
Gij4D may contain multiple real limb bundles. In theory, each
real limb bundle contains two joint cliques. For clarity, a
clique means a graph where every two nodes are connected
[42], see Fig. 3(a) for example. This implies that every
two joints of the same type in the limb bundle must share
a cross-view edge or a temporal edge. By further consider-
ing the parsing edges, a correct 4D limb bundle consists of
two joint clique connected with parsing edges on each view.
We call such limb bundle candidate as limb clique. Fig. 3(b)
enumerates all the possible limb cliques of Fig. 3(a). Con-
sequently, our goal in this step is to search all possible limb
cliques {GC |GC ⊂ Gij4D} for the real limb bundles.

We measure each limb clique with E(ZGC ) based on the
objective function Eqn. 7. However, directly maximizing
E(ZGC ) would always encourage as many edges as possi-
ble to be selected in a clique, even false edges. Hence, we

Figure 4. Illustration of limb bundle parsing procedure. (a) Initial
graph Gij

4D . A square/cube represents a limb (2D or 3D), and each
grey dash line means an edge. (b) A best clique (limb bundle)
detected from (a) is shown in blue. (c) Then, we remove both
limbs and edges related to the best clique, and extract next best
one. (d) Finally, all cliques are detected. We could extract cliques
without temporal edges, like the orange one.

normalize E(ZGC ) with clique size |VC | of GC , and add a
penalty term to balance the clique size and the average prob-
ability. Overall, the objective function for a limb clique is

E(GC) = E(ZGC )/|VC |+ wvρ(|VC |) (8)

where wv is balancing weight, and ρ is a Welsch robust
loss[13, 5] defined as

ρ(x) = 1− exp

(
−1

2
(x/c)2

)
(9)

Here, c = (N − 1)/2 is a parameter depending on the total
number of views.

Fig. 4 illustrates the limb bundle parsing procedure. Af-
ter selecting a limb clique and marking it as a limb bundle,
we remove it from Gij4D (Fig. 4(b)), together with all other
edges connected with any joint in this clique (Fig. 4(c)). By
doing this, our solution always conforms to feasibility in-
equalities (1,6). This selection process is iterated until Gij4D
is empty (Fig. 4(d)).

5.2. 4D Skeleton Assembling

After generating all the 4D limb bundles, we need to
assemble them into multiple 4D human skeletal structures.
We first sort all the 4D limb bundles based on their scores,
and build a priority queue to store them. In each iteration,
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we pop a 4D limb bundle from the queue with the maximum
score (based on Eqn. 8), and merge it into the 4D skele-
tons. In this merging process, all the 2D joints (belongs
to this bundle, from different views) should have a same
labeled person ID. However, since a newly added limb bun-
dle may share the same 4D joint as some limb bundles that
are already assigned, conflicts would arise when these 2D
joints have already been labeled with different person IDs
on different views in the previous iterations, see Fig. 5(a).
To eliminate this conflict, we propose a simple yet effective
way by splitting the newly added limb bundles to small limb
bundles according to the persons whose joints are assigned
to (Fig. 5(b)). We then re-compute the objective function of
each small bundle and push back to the prior queue for fur-
ther assembling. If there is no conflict, we merge the bundle
into the skeleton and label the 2D joints. We iterate popping
and merging until the queue is empty (Fig. 5(c)).

We call the above method bundle Kruskal’s algorithm.
In the single view case, there would be no conflicts, and
our method degenerates to traditional Kruskal’s algorithm,
which is a famous minimum spanning tree (MST) algorithm
used in OpenPose [11].

5.3. Parametric Optimization

Based on 4D skeleton assembling results on the 2D view
images, we can further optimize the full 3D body pose by
embedding a parametric skeleton. We minimize the energy
function

E(Θ) = w2DE2D + wshapeEshape + wtempEtemp (10)

where E2D is the data term aligning 2D projections on each
view to the detected joints, Eshape penalizes human shape
prior (e.g. bone length and symmetry), andEtemp is tempo-
ral smoothing term (w2D, wshape and wtemp are balancing
weights, wtemp = 0 if no temporal information exists). As
this fitting process is a classic optimization step, please re-
fer to [9, 44, 29] for details. Temporally, we track each per-
son and use the average bone lengths of the first five frames
with high confidence (visible in more than 3 cameras) as the
bone length prior for the person in the later frames. If the
person is lost and re-appear, we simply regard him/her as a
new person and re-calculate the bone lengths.

6. Results
In Fig. 6, we demonstrate the results of our system. Us-

ing only geometry information from sparse view points,
our method enables realtime and robust multi-person mo-
tion capture under severe occlusions (Fig. 6(a)), challenging
poses (Fig. 6(b)) and subtle social interactions (Fig. 6(c)).

6.1. Implementation Details

The multi-view capture system consists of 5 synchro-
nized industrial RGB cameras (with resolution 2048×2048)

Figure 5. Conflicts handling in our skeleton assembling step. (a)
A limb bundle to be added. It contains 3 parsing edges on 3 views.
In this case, each parsing edge contains a joint to be assembled
(black node) and a joint already assembled (blue or red nodes) in
previous iterations. Here conflict arises as blue and red belong to
different person IDs. (b) We split original limb bundle into small
bundles according to the existing person IDs. (c) A possible final
assembling result.

and a single PC with one 3.20 GHz CPU and one NVIDIA
TITAN RTX GPU. Our system achieves 30 fps motion cap-
ture for 5 persons. Specifically, for each frame, the pre-
processing step (including demosaicing, undistortion and
resizing for multi-view inputs) takes less than 1 ms, the
CNN inference step takes 22.9 ms in total for 5 images, the
4D association step takes 11 ms, and the parametric opti-
mization step takes less than 4 ms. Moreover, we ping-pong
the CNN inference and the 4D association for achieving re-
altime performance with affordable delay (60 ms). More
details about the optimization parameters are provided in
the supplementary material.

Note that the 4D association pipeline is fully imple-
mented on CPU. Also, in the CNN inference step, the in-
put RGB images are resized to 368 × 368, and the CNNs
for keypoints and PAFs are re-implemented using Ten-
sorRT [40] for further acceleration.

6.2. Dataset

We contribute a new evaluation dataset for multi-person
3D skeleton tracking with ground truth 3D skeletons cap-
tured by commercial motion capture system, OptiTrack [1].
Compared with previous 3D human datasets [25, 21, 32, 24,
8, 2], our dataset is mainly focusing on the more challeng-
ing scenarios like close interactions and challenging mo-
tion. Our dataset contains 5 sequences with each around
20-second long capturing a 2-4 person scene using 6 cam-
eras. Our actors all wear black marker-suit for ground truth
skeletal motion capture. With ground truth 3D skeletons,
our dataset enables more effective quantitative evaluations
for both 2D parsing and 3D tracking algorithms. Note that
besides evaluating our method using the proposed dataset,
we also provide evaluation results using Shelf and Panoptic
Studio dataset following previous works [8, 7, 14].
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Figure 6. Results of our system. From top to bottom: input images, reprojection of 3D human, and 3D visualization respectively. (a)
Our live captured data with fast motion (left), severe occlusion (middle) and crowded scene (right). 5 views used. (b) Our dataset with
textureless clothing and rich motion. 6 views used. (c) Panoptic studio dataset with natural social interaction. 7 views used.

6.3. Quantitative Comparison

We compare with state-of-the-art methods quantitatively
using both the Shelf dataset and our testing dataset. The
quantitative comparison on Shelf dataset is shown in Ta-
ble. 1. Benefiting from our 4D association formulation, we
achieve more accurate results than both temporal tracking
methods based on 3DPS ([8, 6, 7, 16]) and appearance-
based global optimization methods [14].

We also compare with [14] on our testing dataset accord-
ing to ‘precision’ (the ratio of correct joints in all estimated
joints) and ‘recall’ (the ratio of correct joints in all ground
truth joints). A joint is correct if its Euclidean distance to
the ground truth joint is less than threshold 0.2m. As shown
in Tab. 2, our method outperforms [14] under both metrics.

Shelf A1 A2 A3 Avg
Belagiannis et al. [6] 66.1 65.0 83.2 71.4
†Belagiannis et al. [8] 75.0 67.0 86.0 76.0
Belagiannis et al. [7] 75.3 69.7 87.6 77.5
Ershadi-Nasab et al. [16] 93.3 75.9 94.8 88.0
Dong et al. [14] 97.2 79.5 96.5 91.1
*Dong et al. [14] 98.8 94.1 97.8 96.9
†# Tanke et al. [39] 99.8 90.0 98.0 96.0
†Ours(final) 99.0 96.2 97.6 97.6

Table 1. Quantitative comparison on Shelf dataset using percent-
age of correct parts (PCP) metric. ‘*’ means method with appear-
ance information, ‘†’ means method with temporal information,
‘#’ means accuracy without head. ‘A1’-‘A3’ correspond to the re-
sults of three actors, respectively. The averaged result is in column
‘Avg’.

Our Dataset Dong[14] Ours(final)
Precision(%) 71.0 88.5
Recall(%) 80.2 90.2

Table 2. Comparison with [14] using our testing dataset.

Figure 7. Comparison with two-step pipeline. Top figures are asso-
ciation result, bottom figures are reprojection of 3D pose. Notice
that, reprojection of 3D pose generated by two-step pipeline obvi-
ously deviates from correct position due to false parsing.

6.4. Qualitative Comparison

To further demonstrate the advantages of our bottom-
up system, we perform qualitative comparison with the
state-of-the-art method [14], which utilizes top-down hu-
man pose detector [12] to perform single view parsing. The
qualitative results is shown in Fig. 8, from which we can see
that top-down method depends heavily on instance propos-
als, and may generate false positive human pose detection to
deteriorate the cross-view matching performance (left case).
Furthermore, per-view parsing would fail to infer correct
human poses under severe occlusion, deteriorating pose re-
construction results (right). Instead, thanks to relatively pre-
cise low-level features (e.g. keypoints) and robust 4D asso-
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Figure 8. Qualitative comparison with Dong[14] on Shelf (left figure) and our captured data (right figure), both with 5 cameras. For each
case, we show association results and reprojection of 3D pose on two sample views. For 3D visualization, we show a side view rendering
and a top view rendering for clear comparison.

ciation algorithm, the joints are associated more accurately
in our results.

Shelf A1 A2 A3 Avg
two-step 98.1 83.8 97.6 93.1
w/o tracking 96.5 86.8 97.0 93.4
Ours(final) 99.0 96.2 97.6 97.6

Table 3. Ablation study on Shelf dataset. ‘two-step’ means first
per-view parsing and then cross-view matching. ‘w/o tracking’
means we solve G3D in each frame. Both ‘two-step’ and ‘w/o
tracking’ use triangulation to infer 3D poses. Numbers are per-
centage of correct parts(PCP).

6.5. Ablation Study

With/Without tracking. We first evaluate tracking edges
in the 4D graph. By triangulating 2D bodies into 3D skele-
tons directly using G3D, we eliminate the usage of track-
ing edges. The result is labeled as ‘w/o tracking’ in Ta-
ble. 3. Without using tracking edges, our method still
exhibits competent result and out-performs state-of-the-art
method [14] (93.4% vs 91.1%). Moreover, our 4D associ-
ation method is more robust in messy scenes (‘Ours(final)’
as shown in Table. 3).
Compare with two-stage pipeline. We implement a two-
step pipeline for comparison, by using [11] to parse human
in each view, followed with human matching using clique
searching method with objective function defined on the
parsed bodies. Note that no temporal information is used,

and 3D poses are obtained by triangulation. Result is shown
as ‘two-step’ in Table. 3. As shown in Table. 3, our per-
frame G3D solution ‘w/o tracking’ performs better than two-
step pipeline, especially on actor ‘A2’. To show our robust-
ness to per-view parsing ambiguity, we use only 3 views
to reconstruct 2 persons (Fig. 7). Wrong parsing result on
one view would harm the inferred 3D pose, especially when
very sparse views are available.

7. Conclusion

We proposed a realtime multi-person motion capture
method with sparse view points. Build on top of the
low-level detected features directly, we formulated parsing,
matching and tracking problem simultaneously into a uni-
fied 4D graph association framework. The new 4D associ-
ation formulation not only enabled realtime motion capture
performance, but also achieved state-of-the-art accuracy, es-
pecially for crowded and close interaction scenarios. More-
over, we contributed a new testing dataset for multi-person
motion capture with ground truth 3D poses. Our system nar-
rowed the gap between laboratory markerless motion cap-
ture system and industrial applications in real world scenar-
ios. Finally, our novel 4D graph formulation may stimulate
future research in this topic.
Acknowledgements. This paper is supported by the
National Key Research and Development Program of
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